Classification of a single channels fNIRS signal for a brain computer interface

Author(s):  
Qing Yang ◽  
Sheng Ge
2013 ◽  
Vol 133 (3) ◽  
pp. 635-641
Author(s):  
Genzo Naito ◽  
Lui Yoshida ◽  
Takashi Numata ◽  
Yutaro Ogawa ◽  
Kiyoshi Kotani ◽  
...  

2002 ◽  
Vol 41 (04) ◽  
pp. 337-341 ◽  
Author(s):  
F. Cincotti ◽  
D. Mattia ◽  
C. Babiloni ◽  
F. Carducci ◽  
L. Bianchi ◽  
...  

Summary Objectives: In this paper, we explored the use of quadratic classifiers based on Mahalanobis distance to detect mental EEG patterns from a reduced set of scalp recording electrodes. Methods: Electrodes are placed in scalp centro-parietal zones (C3, P3, C4 and P4 positions of the international 10-20 system). A Mahalanobis distance classifier based on the use of full covariance matrix was used. Results: The quadratic classifier was able to detect EEG activity related to imagination of movement with an affordable accuracy (97% correct classification, on average) by using only C3 and C4 electrodes. Conclusions: Such a result is interesting for the use of Mahalanobis-based classifiers in the brain computer interface area.


Author(s):  
Alessandro B. Benevides ◽  
Mário Sarcinelli-Filho ◽  
Teodiano F. Bastos Filho

This paper presents the classification of three mental tasks, using the EEG signal and simulating a real-time process, what is known as pseudo-online technique. The Bayesian classifier is used to recognize the mental tasks, the feature extraction uses the Power Spectral Density, and the Sammon map is used to visualize the class separation. The choice of the EEG channel and sampling frequency is based on the Kullback-Leibler symmetric divergence and a reclassification model is proposed to stabilize the classifications.


Sign in / Sign up

Export Citation Format

Share Document