Position control for hydraulic systems with incomplete differential backstepping sliding mode control

Author(s):  
Dianting Liu ◽  
Lina Wu ◽  
Di Wang
Actuators ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 154
Author(s):  
Bin Wang ◽  
Pengda Ren ◽  
Xinhao Huang

A piston piezoelectric (PZT) pump has many advantages for the use of light actuators. How to deal with the contradiction between the intermittent oil supplying and position control precision is essential when designing the controller. In order to accurately control the output of the actuator, a backstepping sliding-mode control method based on the Lyapunov function is introduced, and the controller is designed on the basis of establishing the mathematical model of the system. The simulation results show that, compared with fuzzy PID and ordinary sliding-mode control, backstepping sliding-mode control has a stronger anti-jamming ability and tracking performance, and improves the control accuracy and stability of the piezoelectric pump-controlled actuator system.


Author(s):  
Tung Lam Nguyen ◽  
Hong Quang Nguyen ◽  
Manh Cuong Nguyen ◽  
Van Manh Tran ◽  
Danh Huy Nguyen ◽  
...  

Author(s):  
Yohan Díaz-Méndez ◽  
Leandro Diniz de Jesus ◽  
Marcelo Santiago de Sousa ◽  
Sebastião Simões Cunha ◽  
Alexandre Brandão Ramos

Sliding mode control (SMC) is a widely used control law for quadrotor regulation and tracking control problems. The purpose of this article is to solve the tracking problem of quadrotors using a relatively novel nonlinear control law based on SMC that makes use of a conditional integrator. It is demonstrated by a motivation example that the proposed control law can improve the transient response and chattering shortcomings of the previous approaches of similar SMC based controllers. The adopted Newton–Euler model of quadrotor dynamics and controller design is treated separately in two subsystems: attitude and position control loops. The stability of the control technique is demonstrated by Lyapunov’s analysis and the effectiveness and performance of the proposed method are compared with a similar integral law, also based on SMC, and validated by tracking control problems using numerical simulations. Simulations were developed in the presence of external disturbances in order to evaluate the controller robustness. The effectiveness of the proposed controller was verified by performance indexes, demonstrating less accumulated tracking errors and control activity and improvement in the transient response and disturbance rejection when compared to a conventional integrator sliding mode controller.


Sign in / Sign up

Export Citation Format

Share Document