Actuators
Latest Publications


TOTAL DOCUMENTS

768
(FIVE YEARS 567)

H-INDEX

19
(FIVE YEARS 6)

Published By Mdpi Ag

2076-0825

Actuators ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 24
Author(s):  
Guan-Yang Liu ◽  
Yi Wang ◽  
Chao Huang ◽  
Chen Guan ◽  
Dong-Tao Ma ◽  
...  

The goal of haptic feedback in robotic teleoperation is to enable users to accurately feel the interaction force measured at the slave side and precisely understand what is happening in the slave environment. The accuracy of the feedback force describing the error between the actual feedback force felt by a user at the master side and the measured interaction force at the slave side is the key performance indicator for haptic display in robotic teleoperation. In this paper, we evaluate the haptic feedback accuracy in robotic teleoperation via experimental method. A special interface iHandle and two haptic devices, iGrasp-T and iGrasp-R, designed for robotic teleoperation are developed for experimental evaluation. The device iHandle integrates a high-performance force sensor and a micro attitude and heading reference system which can be used to identify human upper limb motor abilities, such as posture maintenance and force application. When a user is asked to grasp the iHandle and maintain a fixed position and posture, the fluctuation value of hand posture is measured to be between 2 and 8 degrees. Based on the experimental results, human hand tremble as input noise sensed by the haptic device is found to be a major reason that results in the noise of output force from haptic device if the spring-damping model is used to render feedback force. Therefore, haptic rendering algorithms should be independent of hand motion information to avoid input noise from human hand to the haptic control loop in teleoperation. Moreover, the iHandle can be fixed at the end effector of haptic devices; iGrasp-T or iGrasp-R, to measure the output force/torque from iGrasp-T or iGrasp-Rand to the user. Experimental results show that the accuracy of the output force from haptic device iGrasp-T is approximately 0.92 N, and using the force sensor in the iHandle can compensate for the output force inaccuracy of device iGrasp-T to 0.1 N. Using a force sensor as the feedback link to form a closed-loop feedback force control system is an effective way to improve the accuracy of feedback force and guarantee high-fidelity of feedback forces at the master side in robotic teleoperation.


Actuators ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Qingqing Wang ◽  
Qianwei Zhang ◽  
Yin Zhang ◽  
Guoan Zhou ◽  
Zhiqiang Li ◽  
...  

As a critical component of the sugarcane harvester, the primary function of the crop dividers is to lift the lodged sugarcane (LS) and reduce the loss rate of the sugarcane harvest. In this study, a rigid-flexible coupling simulation method is proposed to improve the lifting efficiency of the crop dividers on severely LS and analyze the nature of interaction between the sugarcane stalk and the crop dividers. The model’s accuracy was verified using field experiments, and the operational performance of the crop dividers on sugarcane in different lodging postures was investigated. The results showed that the curve of the vertical height of the center (VHC) fluctuated more and slipped with highest frequency during the lifting process of side and forward LS. The speed of VHC was fastest during the lifting operation of side LS. The effect of side angle on the lifting effect of sugarcane was significant; the qualified values of the VHC of sugarcane being lifted in different lodged postures were: side and reverse lodged > side lodged > side and forward lodged. The coupling method and experimental results described in this paper can provide guidance for the optimal design and field operation of the crop dividers.


Actuators ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 22
Author(s):  
Liang Wang ◽  
Zhiqiang Zhai ◽  
Zhongxiang Zhu ◽  
Enrong Mao

To improve the path tracking accuracy of autonomous tractors in operation, an improved Stanley controller (IMP-ST) is proposed in this paper. The controller was applied to a two-wheel tractor dynamics model. The parameters of the IMP-ST were optimized by multiple-population genetic algorithm (MPGA) to obtain better tracking performance. The main purpose of this paper is to implement path tracking control on an autonomous tractor. Thus, it is significant to study this field because of smart agricultural development. According to the turning strategy of tractors in field operations, five working routes for tractors were designed, including straight, U, Ω, acute-angle and obtuse-angle routes. Simulation tests were conducted to verify the effectiveness of the proposed IMP-ST in tractor path tracking for all routes. The lateral root-mean-square (RMS) error of the IMP-ST was reduced by up to 36.84% and 48.61% compared to the extended Stanley controller and the original Stanley controller, respectively. The simulation results indicate that the IMP-ST performed well in guiding the tractor to follow all planned working routes. In particular, for the U and Ω routes, the two most common turning methods in tractor field operations, the path tracking performance of the IMP-ST was improved by 41.72% and 48.61% compared to the ST, respectively. Comparing and analyzing the e-Ψ and β-γ phase plane of the three controllers, the results indicate that the IMP-ST has the best control stability.


Actuators ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 18
Author(s):  
Fahimeh Shiravani ◽  
Patxi Alkorta ◽  
Jose Antonio Cortajarena ◽  
Oscar Barambones

In this paper, an enhanced Integral Sliding Mode Control (ISMC) for mechanical speed of an Induction Motor (IM) is presented and experimentally validated. The design of the proposed controller has been done in the d-q synchronous reference frame and indirect Field Oriented Control (FOC). Global asymptotic speed tracking in the presence of model uncertainties and load torque variations has been guaranteed by using an enhanced ISMC surface. Moreover, this controller provides a faster speed convergence rate compared to the conventional ISMC and the Proportional Integral methods, and it eliminates the steady-state error. Furthermore, the chattering phenomenon is reduced by using a switching sigmoid function. The stability of the proposed controller under parameter uncertainties and load disturbances has been provided by using the Lyapunov stability theory. Finally, the performance of this control method is verified through numerical simulations and experimental tests, getting fast dynamics and good robustness for IM drives.


Actuators ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 19
Author(s):  
Xiaolong Yang ◽  
Yingjie Chen ◽  
Yuting Liu ◽  
Ruibo Zhang

With the increasing number of cars, the demand for vehicle maintenance lifts is also increasing. The hydraulic valve is one of its core components, but there are problems with it such as inaccurate positioning and failure. In order to improve the service performance of vehicle maintenance elevators, a novel annular multi-channel magnetorheological (MR) valve structure was creatively proposed based on intelligent material MR fluid (MRF), and its magnetic circuit was designed. The influence of current, damping gap and coil turns on the pressure drop performance of the annular multi-channel MR valve was numerically studied and compared with ordinary type magnetorheological valve pressure drop performance through contrast and analysis. The influence of different loads and currents on the pressure drop performance of annular multi-channel magnetorheological valve was verified by experiments, and the reliability of numerical analysis results was verified. The results show that the single winding excitation coil is 321 to meet the demand. The pressure drop performance of the annular multi-channel magnetorheological valve is 5.6 times that of the ordinary magnetorheological valve. The load has little influence on the regulating range and performance of pressure drop of the MR valve. Compared with the common type, the pressure drop performance of the annular multi-channel MR Valve is improved by 3.7 times, which is basically consistent with the simulation results.


Actuators ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 20
Author(s):  
Zhenwei Chen ◽  
Wei Tang ◽  
Ze Li ◽  
Jiaqi Lan

The piezoelectric (PE) fan is widely adopted in the field of microelectronics cooling due to its advantages of high reliability and good heat dissipation characteristics. However, PE fans driven by conventional circuits suffer from plenty of energy loss. To save energy, we propose an inductor-based charge recovery method and apply it to the driving circuit for the PE fan. Two inductor-based driving circuits, a single inductor-based driving (SID) circuit and a double inductor-based driving (DID) circuit are compared. The SID circuit has a simple structure and a slightly higher energy-saving rate, while the DID circuit introduces no additional oscillations and is more stable. The experimental results show that when the supply voltage changes, both circuits have a relatively stable energy-saving rate, which is about 30% for the SID circuit and 28% for the DID circuit. Moreover, the proposed circuits enjoy the same driving capacity as the conventional circuit, and the driven fan has the same cooling performance.


Actuators ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Alejandro Piñón ◽  
Antonio Favela-Contreras ◽  
Francisco Beltran-Carbajal ◽  
Camilo Lozoya ◽  
Graciano Dieck-Assad

Many industrial processes include MIMO (multiple-input, multiple-output) systems that are difficult to control by standard commercial controllers. This paper describes a MIMO case of a class of SISO-APC (single-input, single-output adaptive predictive controller) based upon an ARX (autoregressive with exogenous variable) model. This class of SISO-APC based on ARX models has been successfully and extensively used in many industrial applications. This approach aims to minimize the barriers between the theory of predictive adaptive control and its application in the industrial environment. The proposed MIMO-APC (MIMO adaptive predictive controller) performance is validated with two simulated processes: a quadrotor drone and the quadruple tank process. In the first experiment the proposed MIMO APC shows ISE-IAE-ITAE performance indices improvements of up to 25%, 25.4% and 38.9%, respectively. For the quadruple tank process the water levels in the lower tanks follow closely the set points, with the exception of a 13% overshoot in tank 1 for the minimum phase behavior response. The controller responses show significant performance improvements when compared with previously published MIMO control strategies.


Actuators ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 17
Author(s):  
Paolo Tripicchio ◽  
Salvatore D’Avella ◽  
Emanuele Ruffaldi

The simulation of fabrics physics and its interaction with the human body has been largely studied in recent years to provide realistic-looking garments and wears specifically in the entertainment business. When the purpose of the simulation is to obtain scientific measures and detailed mechanical properties of the interaction, the underlying physical models should be enhanced to obtain better simulation accuracy increasing the modeling complexity and relaxing the simulation timing constraints to properly solve the set of equations under analysis. However, in the specific field of haptic interaction, the desiderata are to have both physical consistency and high frame rate to display stable and coherent stimuli as feedback to the user requiring a tradeoff between accuracy and real-time interaction. This work introduces a haptic system for the evaluation of the fabric hand of specific garments either existing or yet to be produced in a virtual reality simulation. The modeling is based on the co-rotational Finite Element approach that allows for large displacements but the small deformation of the elements. The proposed system can be beneficial for the fabrics industry both in the design phase or in the presentation phase, where a virtual fabric portfolio can be shown to customers around the world. Results exhibit the feasibility of high-frequency real-time simulation for haptic interaction with virtual garments employing realistic mechanical properties of the fabric materials.


Actuators ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 16
Author(s):  
Bing Zhang ◽  
Kang Nie ◽  
Xinglong Chen ◽  
Yao Mao

The electro-optical tracking system (ETS) on moving platforms is affected by the vibration of the moving carrier, the wind resistance torque in motion, the uncertainty of mechanisms and the nonlinear friction between frames and other disturbances, which may lead to the instability of the electro-optical tracking platform. Sliding mode control (SMC) has strong robustness to system disturbances and unknown dynamic external signals, which can enhance the disturbance suppression ability of ETSs. However, the strong robustness of SMC requires greater switching gain, which causes serious chattering. At the same time, the tracking accuracy of SMC has room for further improvement. Therefore, in order to solve the chattering problem of SMC and improve the tracking accuracy of SMC, an SMC controller based on internal model control (IMC) is proposed. Compared with traditional SMC, the proposed method can be used to suppress the strongest disturbance with the smallest switching gain, effectively solving the chattering problem of the SMC, while improving the tracking accuracy of the system. In addition, to reduce the adverse influence of sensor noise on the control effect, lifting wavelet threshold de-noising is introduced into the control structure to further improve the tracking accuracy of the system. The simulation and experimental results verify the superiority of the proposed control method.


Actuators ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 15
Author(s):  
Shengwei Yang ◽  
Rusheng Wang ◽  
Jing Zhou ◽  
Bo Chen

In wind turbine systems, the state of the generator is always disturbed by various unknown perturbances, which leads to system instability and inaccurate state estimation. In this paper, an intermediate-variable-based distributed fusion estimation method is proposed for the state estimation problem in wind turbine systems. By constructing an augmented state error system and using the idea of bounded recursive optimization, the local estimators and distributed fusion criterion are designed, which can be used to estimate the disturbance signals and system states. Then, the local estimator gains and the distributed weighting fusion matrices are obtained by solving the established convex optimization problems. Furthermore, a compensation strategy is designed by using the estimated disturbance signals, which can potentially reduce the influence of the disturbance signals on the system state. Finally, a numerical simulation is provided to show that the proposed method can effectively improve the accuracy of the estimation of the wind turbine state and disturbance, and the superiority of the proposed method is illustrated as a comparison to the Kalman fusion method.


Sign in / Sign up

Export Citation Format

Share Document