Adaptive synchronization of a class of chaotic neural networks with time-varying delays and uncertain parameters

Author(s):  
Aiping Li ◽  
Dongsheng Yang ◽  
Zhengdong Yu ◽  
Rencai Sun ◽  
Qingqi Zhao
Author(s):  
Jian-an Fang ◽  
Yang Tang

Neural networks (NNs) have been useful in many fields, such as pattern recognition, image processing etc. Recently, synchronization of chaotic neural networks (CNNs) has drawn increasing attention due to the high security of neural networks. In this chapter, the problem of synchronization and parameter identification for a class of chaotic neural networks with stochastic perturbation via state and output coupling, which involve both the discrete and distributed time-varying delays has been investigated. Using adaptive feedback techniques, several sufficient conditions have been derived to ensure the synchronization of stochastic chaotic neural networks. Moreover, all the connection weight matrices can be estimated while the lag synchronization and complete synchronization is achieved in mean square at the same time. The corresponding simulation results are given to show the effectiveness of the proposed method.


2009 ◽  
Vol 23 (09) ◽  
pp. 1171-1187 ◽  
Author(s):  
YANG TANG ◽  
RUNHE QIU ◽  
JIAN-AN FANG

In this letter, a general model of an array of N linearly coupled chaotic neural networks with hybrid coupling is proposed, which is composed of constant coupling, time-varying delay coupling and distributed delay coupling. The complex network jumps from one mode to another according to a Markovian chain with known transition probability. Both the coupling time-varying delays and the coupling distributed delays terms are mode-dependent. By the adaptive feedback technique, several sufficient criteria have been proposed to ensure the synchronization in an array of jump chaotic neural networks with mode-dependent hybrid coupling and mixed delays in mean square. Finally, numerical simulations illustrated by mode switching between two complex networks of different structure dependent on mode switching verify the effectiveness of the proposed results.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Desheng Hong ◽  
Zuoliang Xiong ◽  
Cuiping Yang

Linear feedback control and adaptive feedback control are proposed to achieve the synchronization of stochastic neutral-type memristive neural networks with mixed time-varying delays. By applying the stochastic differential inclusions theory, Lyapunov functional, and linear matrix inequalities method, we obtain some new adaptive synchronization criteria. A numerical example is given to illustrate the effectiveness of our results.


Sign in / Sign up

Export Citation Format

Share Document