An improved visual force algorithm for node deployment strategy in wireless sensor network

Author(s):  
Xirong Bao ◽  
Ming Yang ◽  
Xuefeng Zhang
2016 ◽  
Vol 12 (10) ◽  
pp. 81
Author(s):  
Xiaoqun Mao

<p style="margin: 0in 0in 10pt;"><span style="font-family: Times New Roman; font-size: small;">The relation between the density of a randomly distributed wireless sensor network node and the node’s energy consumption is discussed, and the result shows that the way to extend the network lifetime is to deploy sink nodes in the field with a larger density of sensor nodes. Furthermore, the RDF algorithm a simple, effective and highly efficient strategy for deploying sink nodes, is proposed in this paper based on simulation results. The said algorithm determines the sink node location by giving reference for a large density of sensor nodes. Additionally, the sink node deployment can be efficiently achieved through dividing the region of network and the sink node communication range. Lastly, through simulation verification, the RDF algorithm deployment strategy is further proved valid and effective from the perspective of network lifetime and message delivery rate. </span></p>


Author(s):  
Haiqing Yao ◽  
Xiuwen Fu ◽  
Yongsheng Yang ◽  
Ioan Ungurean ◽  
Octavian Postolache

Author(s):  
Zahoor Ahmed ◽  
Kamalrulnizam Abu Bakar

The deployment of Linear Wireless Sensor Network (LWSN) in underwater environment has attracted several research studies in the underwater data collection research domain. One of the major issues in underwater data collection is the lack of robust structure in the deployment of sensor nodes. The challenge is more obvious when considering a linear pipeline that covers hundreds of kilometers. In most of the previous work, nodes are deployed not considering heterogeneity and capacity of the various sensor nodes. This lead to the problem of inefficient data delivery from the sensor nodes on the underwater pipeline to the sink node at the water surface. Therefore, in this study, an Enhanced Underwater Linear Wireless Sensor Network Deployment (EULWSND) has been proposed in order to improve the robustness in linear sensor underwater data collection. To this end, this paper presents a review of related literature in an underwater linear wireless sensor network. Further, a deployment strategy is discussed considering linearity of the underwater pipeline and heterogeneity of sensor nodes. Some research challenges and directions are identified for future research work. Furthermore, the proposed deployment strategy is implemented using AQUASIM and compared with an existing data collection scheme. The result demonstrates that the proposed EULWSND outperforms the existing Dynamic Address Routing Protocol for Pipeline Monitoring (DARP-PM) in terms of overhead and packet delivery ratio metrics. The scheme performs better in terms of lower overhead with 17.4% and higher packet delivery with 20.5%.


Sign in / Sign up

Export Citation Format

Share Document