Adaptive Fault-Tolerant Control for Rigid Spacecraft Attitude System Using Fractional Order Sliding Mode

Author(s):  
Xiaobo Zhang ◽  
Zhifeng Gao ◽  
Moshu Qian ◽  
Lang Bai
Author(s):  
Bijan Hashtarkhani ◽  
Mohammad Javad Khosrowjerdi

This article proposes an adaptive neural output tracking control scheme for a class of nonlinear fractional order (FO) systems in the presence of unknown actuator faults. By means of backstepping terminal sliding mode (SM) control technique, an adaptive fractional state-feedback control law is extracted to achieve finite time stability along with output tracking for an uncertain faulty FO system. The unknown nonlinear terms are approximated by radial-basis function neural network (RBFNN) with unknown approximation error upper bound. Using convergence in finite time and fractional Lyapunov stability theorems, the finite time stability and tracking achievement are proved. Finally, the proposed fault tolerant control (FTC) approach is validated with numerical simulations on two fractional models including fractional Genesio–Tesi and fractional Duffing's oscillator systems.


Sign in / Sign up

Export Citation Format

Share Document