Fault-tolerant control for flexible spacecraft attitude maneuver via integral sliding mode control approach

Author(s):  
Jingbo Fu ◽  
Ming Liu ◽  
Lei Chen
2019 ◽  
Vol 41 (13) ◽  
pp. 3756-3768 ◽  
Author(s):  
Salman Ijaz ◽  
Mirza Tariq Hamayun ◽  
Lin Yan ◽  
Hamdoon Ijaz ◽  
Cun Shi

In modern aircraft, the dissimilar redundant actuation system is used to resolve the actuator failure issues due to the common cause, thus increasing the system reliability. This paper proposes an adaptive integral sliding mode fault tolerant control strategy to deal with actuator fault/failure in the dissimilar redundant actuation system of civil aircraft. To cope with the unknown actuator faults, the adaptive integral sliding mode controller is designed where the modulation gain is made adaptive to the fault. To deal with the complete failure of certain actuator, the integral sliding mode control is integrated with control allocation scheme and distribute the control input signals to the redundant actuators. The performance of the proposed scheme is tested on the nonlinear model of dissimilar redundant actuation system, where the effect of external airload is accounted during simulations. The effectiveness of the proposed scheme is validated by comparing the simulations with the existing literature.


Author(s):  
Satyanarayan Sadala ◽  
Balasaheb Patre ◽  
Divyesh Ginoya

This paper introduces a new continuous integral sliding mode control algorithm, where the discontinuous function of the super-twisting control law is replaced with a continuous disturbance observer for the substantial chattering attenuation. In the present integral sliding mode control, the discontinuous function generates chattering that is undesirable for several real-time applications. The proposed control strategy decreases the amplitude of the controller gain compared to the existing integral sliding mode controls, and as a consequence of this, the attenuation of chattering is achieved to a great extent. The efficacy of the proposed control algorithm is validated successfully on the single-input single-output Inverted Pendulum and 2-DOF Helicopter nonlinear coupled multi-input multi-output systems. The simulation and experimental results demonstrate the successful application of the proposed control approach to follow reference inputs and acquire robustness and stabilization of the system in the presence of limited matched perturbations and nonlinearities.


2021 ◽  
Author(s):  
Tabassum Haque ◽  
Tushar Kanti Roy ◽  
Farjana Faria ◽  
Most. Mahmuda Khatun ◽  
Tanmoy Sarkar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document