An adaptive time window method for human activity recognition

Author(s):  
Zhang Sheng ◽  
Chen Hailong ◽  
Jiang Chuan ◽  
Zhang Shaojun
Information ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 203 ◽  
Author(s):  
Jun Long ◽  
Wuqing Sun ◽  
Zhan Yang ◽  
Osolo Ian Raymond

Human activity recognition (HAR) using deep neural networks has become a hot topic in human–computer interaction. Machines can effectively identify human naturalistic activities by learning from a large collection of sensor data. Activity recognition is not only an interesting research problem but also has many real-world practical applications. Based on the success of residual networks in achieving a high level of aesthetic representation of automatic learning, we propose a novel asymmetric residual network, named ARN. ARN is implemented using two identical path frameworks consisting of (1) a short time window, which is used to capture spatial features, and (2) a long time window, which is used to capture fine temporal features. The long time window path can be made very lightweight by reducing its channel capacity, while still being able to learn useful temporal representations for activity recognition. In this paper, we mainly focus on proposing a new model to improve the accuracy of HAR. In order to demonstrate the effectiveness of the ARN model, we carried out extensive experiments on benchmark datasets (i.e., OPPORTUNITY, UniMiB-SHAR) and compared the results with some conventional and state-of-the-art learning-based methods. We discuss the influence of networks parameters on performance to provide insights about its optimization. Results from our experiments show that ARN is effective in recognizing human activities via wearable datasets.


Author(s):  
Lidia Bajenaru ◽  
Ciprian Dobre ◽  
Radu-Ioan Ciobanu ◽  
Georgiana Dedu ◽  
Silviu-George Pantelimon ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1715
Author(s):  
Michele Alessandrini ◽  
Giorgio Biagetti ◽  
Paolo Crippa ◽  
Laura Falaschetti ◽  
Claudio Turchetti

Photoplethysmography (PPG) is a common and practical technique to detect human activity and other physiological parameters and is commonly implemented in wearable devices. However, the PPG signal is often severely corrupted by motion artifacts. The aim of this paper is to address the human activity recognition (HAR) task directly on the device, implementing a recurrent neural network (RNN) in a low cost, low power microcontroller, ensuring the required performance in terms of accuracy and low complexity. To reach this goal, (i) we first develop an RNN, which integrates PPG and tri-axial accelerometer data, where these data can be used to compensate motion artifacts in PPG in order to accurately detect human activity; (ii) then, we port the RNN to an embedded device, Cloud-JAM L4, based on an STM32 microcontroller, optimizing it to maintain an accuracy of over 95% while requiring modest computational power and memory resources. The experimental results show that such a system can be effectively implemented on a constrained-resource system, allowing the design of a fully autonomous wearable embedded system for human activity recognition and logging.


Sign in / Sign up

Export Citation Format

Share Document