A Novel Stochastic Gradient Descent Algorithm Based on Grouping over Heterogeneous Cluster Systems for Distributed Deep Learning

Author(s):  
Wenbin Jiang ◽  
Geyan Ye ◽  
Laurence T. Yang ◽  
Jian Zhu ◽  
Yang Ma ◽  
...  
2020 ◽  
Vol 63 (6) ◽  
pp. 900-912
Author(s):  
Oswalt Manoj S ◽  
Ananth J P

Abstract Rainfall prediction is the active area of research as it enables the farmers to move with the effective decision-making regarding agriculture in both cultivation and irrigation. The existing prediction models are scary as the prediction of rainfall depended on three major factors including the humidity, rainfall and rainfall recorded in the previous years, which resulted in huge time consumption and leveraged huge computational efforts associated with the analysis. Thus, this paper introduces the rainfall prediction model based on the deep learning network, convolutional long short-term memory (convLSTM) system, which promises a prediction based on the spatial-temporal patterns. The weights of the convLSTM are tuned optimally using the proposed Salp-stochastic gradient descent algorithm (S-SGD), which is the integration of Salp swarm algorithm (SSA) in the stochastic gradient descent (SGD) algorithm in order to facilitate the global optimal tuning of the weights and to assure a better prediction accuracy. On the other hand, the proposed deep learning framework is built in the MapReduce framework that enables the effective handling of the big data. The analysis using the rainfall prediction database reveals that the proposed model acquired the minimal mean square error (MSE) and percentage root mean square difference (PRD) of 0.001 and 0.0021.


Author(s):  
Simone Göttlich ◽  
Claudia Totzeck

AbstractWe propose a neural network approach to model general interaction dynamics and an adjoint-based stochastic gradient descent algorithm to calibrate its parameters. The parameter calibration problem is considered as optimal control problem that is investigated from a theoretical and numerical point of view. We prove the existence of optimal controls, derive the corresponding first-order optimality system and formulate a stochastic gradient descent algorithm to identify parameters for given data sets. To validate the approach, we use real data sets from traffic and crowd dynamics to fit the parameters. The results are compared to forces corresponding to well-known interaction models such as the Lighthill–Whitham–Richards model for traffic and the social force model for crowd motion.


Author(s):  
Hui Zhao ◽  
Hai-Xia Zhang ◽  
Qing-Jiao Cao ◽  
Sheng-Juan Sun ◽  
Xuanzhe Han ◽  
...  

Deep learning algorithms have shown superior performance than traditional algorithms when dealing with computationally intensive tasks in many fields. The algorithm model based on deep learning has good performance and can improve the recognition accuracy in relevant applications in the field of computer vision. TensorFlow is a flexible opensource machine learning platform proposed by Google, which can run on a variety of platforms, such as CPU, GPU, and mobile devices. TensorFlow platform can also support current popular deep learning models. In this paper, an image recognition toolkit based on TensorFlow is designed and developed to simplify the development process of more and more image recognition applications. The toolkit uses convolutional neural networks to build a training model, which consists of two convolutional layers: one batch normalization layer before each convolutional layer, and the other pooling layer after each convolutional layer. The last two layers of the model use the full connection layer to output recognition results. Batch gradient descent algorithm is adopted in the optimization algorithm, and it integrates the advantages of both the gradient descent algorithm and the stochastic gradient descent algorithm, which greatly reduces the number of convergence iterations and has little influence on the convergence effect. The total training parameters of the toolkit model reach 1.7 million. In order to prevent overfitting problems, the dropout layer before each full connection layer is added and the threshold of 0.5 is set in the design. The convolution neural network model is trained and tested by the MNIST set on TensorFlow. The experimental result shows that the toolkit achieves the recognition accuracy of 99% on the MNIST test set. The development of the toolkit provides powerful technical support for the development of various image recognition applications, reduces its difficulty, and improves the efficiency of resource utilization.


Sign in / Sign up

Export Citation Format

Share Document