A quantitative quality control method of big data in cancer patients using artificial neural network

Author(s):  
Hong Shen ◽  
Jinglei Meng ◽  
Licheng Yu ◽  
Xuefeng Fang ◽  
Tianzhou Chen ◽  
...  
2014 ◽  
Vol 41 (6Part14) ◽  
pp. 270-270
Author(s):  
Daniel D Cho ◽  
A Gabriella Wernicke ◽  
Dattatreyudu Nori ◽  
KSC Chao ◽  
Bhupesh Parashar ◽  
...  

2020 ◽  
pp. 004728752092124 ◽  
Author(s):  
Wolfram Höpken ◽  
Tobias Eberle ◽  
Matthias Fuchs ◽  
Maria Lexhagen

Because of high fluctuations of tourism demand, accurate predictions of tourist arrivals are of high importance for tourism organizations. The study at hand presents an approach to enhance autoregressive prediction models by including travelers’ web search traffic as external input attribute for tourist arrival prediction. The study proposes a novel method to identify relevant search terms and to aggregate them into a compound web-search index, used as additional input of an autoregressive prediction approach. As methods to predict tourism arrivals, the study compares autoregressive integrated moving average (ARIMA) models with the machine learning–based technique artificial neural network (ANN). Study results show that (1) Google Trends data, mirroring traveler’s online search behavior (i.e., big data information source), significantly increase the performance of tourist arrival prediction compared to autoregressive approaches using past arrivals alone, and (2) the machine learning technique ANN has the capacity to outperform ARIMA models.


Author(s):  
Leonid Yaroshenko ◽  
Roman Chubyk ◽  
Iryna Derevenko

The article analyzes and proposes an approach to the construction of a control system for electromechanical debalance vibrodrive for vibration machines based on an artificial neural network. As a result of the analysis of various methods of managing dynamic objects it is concluded that the most appropriate and perfect for this type of machine is neurocontrol method of predictive model neurocontrol, which allows to expand the functionality of these vibrating machines and significantly save energy for vibratory drive of their oscillations. A direct neuro-emulator is used to predict the future behavior of the oscillating mechanical system of the vibration technological machines and to calculate errors. An important feature of the predictive neurocontrol model in the proposed method of controlling the operation of vibrating technological machines using an artificial neural system is that there is no neurocontroller that needs to be trained, its place is taken by the optimization algorithm. Applying the proposed method of controlling operation of adaptive vibration technology machines using artificial neural network will optimize the electromechanical control of debalanced vibration drive of vibrating machines and provide optimal resonant modes of its operation (which is energy efficient) in all technological modes of vibrating operation. The technical and economic characteristics of this control method are further improved due to the fact that the proposed control method uses the technology of predictive model neurocontrol and as a result is constantly calculated (forecasted) several cycles in advance and determines the best strategy to control the frequency of forced cyclic vibration. As a result, the mechanical system of vibration machines spends less time in non-resonant mode. This method of control also minimizes the duration of transients when changing the load mass of the working body vibration or changing the mode of vibration parameters and the parameters of their technological process.


Sign in / Sign up

Export Citation Format

Share Document