resonant mode
Recently Published Documents


TOTAL DOCUMENTS

530
(FIVE YEARS 120)

H-INDEX

30
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Ming Fu ◽  
Mónica Mota ◽  
Xiaofei Xiao ◽  
Andrea Jacassi ◽  
Yi Li ◽  
...  

Abstract The Raman scattering of light by molecular vibrations offers a powerful technique to ‘fingerprint’ molecules via their internal bonds and symmetries. Since Raman scattering is weak1, methods to enhance, direct and harness it are highly desirable, e.g. through the use of optical cavities2, waveguides3–6, and surface enhanced Raman scattering (SERS)7–9. While SERS offers dramatic enhancements6,15,22,2 by localizing light within vanishingly small ‘hot-spots’ in metallic nanostructures, these tiny interaction volumes are only sensitive to few molecules, yielding weak signals that are difficult to detect10 . Here, we show that SERS from 4-Aminothiophenol (4-ATP) molecules bonded to a plasmonic gap waveguide is directed into a single mode with > 99% efficiency. Although sacrificing a confinement dimension, we find > 104 times SERS enhancement across a broad spectral range enabled by the waveguide’s larger sensing volume and non-resonant mode. Remarkably, the waveguide-SERS (W-SERS) is bright enough to image Raman transport across the waveguides exposing the roles of nanofocusing11–13 and the Purcell effect14. Emulating the e-factor from laser physics15–17, the near unity Raman -factor observed exposes the SERS technique in a new light and points to alternative routes to controlling Raman scattering. The ability of W-SERS to direct Raman scattering is relevant to Raman sensors based on integrated photonics7–9 with applications in gas and bio-sensing as well as healthcare.


2021 ◽  
Author(s):  
Khuong Duy Mac ◽  
Muhammad Mohsin Qureshi ◽  
Myeongsu Na ◽  
Sunghoe Chang ◽  
Hyuk-Sang Kwon ◽  
...  

AbstractIn microscopic imaging of biological tissues, particularly real-time visualization of neuronal activities, rapid acquisition of volumetric images poses a prominent challenge. Typically, two-dimensional (2D) microscopy can be devised into an imaging system with 3D capability using any varifocal lens. Despite the conceptual simplicity, such an upgrade yet requires additional, complicated device components and suffers a reduced acquisition rate, which is critical to document neuronal dynamics properly. In this study, we implemented an electro-tunable lens (ETL) in the line-scan confocal microscopy, enabling the volumetric acquisition at the rate of 20 frames per second with the maximum volume of interest of 315 × 315 × 80 μm3. The axial extent of point-spread-function (PSF) was 17.6 ± 1.6 μm and 90.4 ± 2.1 μm with the ETL operating in either stationary or resonant mode, respectively, revealing significant depth elongation by the resonant mode ETL microscopy. We further demonstrated the utilities of the ETL system by volume imaging of cleared mouse brain ex vivo samples and in vivo brains. The current study foregrounds the successful application of resonant ETL for constructing a basis for a high-performance 3D line-scan confocal microscopy system, which will enhance our understanding of various dynamic biological processes.


2021 ◽  
Vol 939 (1) ◽  
pp. 012002
Author(s):  
M Ibragimov ◽  
I E Tadjibekova ◽  
O Matchonov

Abstract This article is addressed to the inductivity of the feeder transformer influence on of the plate-type ozone generator operating modes. The equation characterises the ozone generator interconnected operation with the transformer, in discharge and non-discharge modes is represented. Use of the near-resonant mode of operation is proposed with a view to reach maximum output capacity. With that end in view, it is proposed to use the transformer with higher inductance. Oscillograph charts of two modes of operation of the ozone generator are analysed. Current waveform factors are determined by the harmonic analysis method. Experiments proved that current waveform factor increase in value for the account of continuous discharge is conductive to increase of ozone output by 25-30 % and power loss reduction by 10-15 %.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2927
Author(s):  
Luhua Zhang ◽  
Aiting Wu ◽  
Pengquan Zhang ◽  
Zhonghai Zhang

This letter proposes a multi-passband half-mode substrate integrated waveguide (HMSIW) filter based on the theory of odd and even mode analysis. The filter adopts a triangular HMSIW cavity cut along the diagonal of the rectangle. By etching two dual-mode resonators, the resonant mode of the HMSIW resonator is coupled with the odd-even mode of the dual-mode resonator to achieve multiple passbands. The defected ground structure (DGS) of the filter can reduce the resonance frequency of the HMSIW cavity without increasing the volume of the HMSIW cavity, making it easier to couple with the odd and even mode frequencies of the resonator. The input and output ports are directly coupled through a microstrip line. In this way, it adds an additional coupling path to the filter, which increases the out-of-band suppression without changing the performance in the passband, and improves the overall performance of the filter. To prove the feasibility of the above method, a multi-passband HMSIW filter was fabricated and tested. The center frequencies of the three passbands of the filter are 2.98 GHz, 4.78 GHz, and 6.62 GHz, respectively. The return loss in the passband is better than −15 dB, and the insertion loss is better than 2 dB. The measured results have a good agreement with the simulation results.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3030
Author(s):  
Marco Saldutti ◽  
Meng Xiong ◽  
Evangelos Dimopoulos ◽  
Yi Yu ◽  
Mariangela Gioannini ◽  
...  

Photonic crystal cavities enable strong light–matter interactions, with numerous applications, such as ultra-small and energy-efficient semiconductor lasers, enhanced nonlinearities and single-photon sources. This paper reviews the properties of the modes of photonic crystal cavities, with a special focus on line-defect cavities. In particular, it is shown how the fundamental resonant mode in line-defect cavities gradually turns from Fabry–Perot-like to distributed-feedback-like with increasing cavity size. This peculiar behavior is directly traced back to the properties of the guided Bloch modes. Photonic crystal cavities based on Fano interference are also covered. This type of cavity is realized through coupling of a line-defect waveguide with an adjacent nanocavity, with applications to Fano lasers and optical switches. Finally, emerging cavities for extreme dielectric confinement are covered. These cavities promise extremely strong light–matter interactions by realizing deep sub-wavelength mode size while keeping a high quality factor.


Author(s):  
Jisheng Chen ◽  
Yang Xu ◽  
Juan Sandoval ◽  
Patrick Kwon ◽  
Yang Guo

Abstract This paper presents an experimental study on a novel mechanical surface treatment process, namely piezo vibration striking treatment (PVST), which is realized by a piezo stack vibration device installed on a CNC machine. Unlike other striking-based surface treatments, PVST employs non-resonant mode piezo vibration to induce controllable tool strikes on workpiece surface. In this study, an experimental setup of PVST is implemented. Four types of experiments, i.e., tool-surface approaching, single-spot striking, 1D scan striking, and 2D scan striking, are conducted to investigate the relationships among the striking force, tool vibration displacement, and surface deformation in PVST. The study shows that PVST can induce strikes with consistent intensity in each cycle of tool vibration. Both the striking intensity and striking location can be well controlled. Such process capability is particularly demonstrated by the resulting texture and roughness of the treated surfaces. Moreover, two linear force relationships have been found in PVST. The first linear relationship is between the striking force and the reduction in vibration amplitude during striking. The second one is between the striking force and the permanent indentation depth created by the strike. These linear force relationships offer the opportunity to realize real-time monitoring and force-based feedback control of PVST. This study is the first step towards developing PVST as a more efficient deformation-based surface modification process.


Author(s):  
Jiaxin Kuang ◽  
Haiwen Liu ◽  
Linping Feng ◽  
Tian Hongliang

Abstract In this paper, a compact balanced diplexer using a novel hairpin split ring resonator (H-SRR) is presented and demonstrated. Firstly, the working principle of the proposed H-SRR is described, which shows a negative permittivity or a negative permeability in the stopband. It can be used to construct compact passive components and improve the stopband rejection performance. Then, the differential-mode (DM) excitation and common-mode (CM) excitation are investigated, respectively. Under DM operation, the H-SRR can provide one DM resonant mode. Under CM operation, the H-SRR can excite two CM resonant modes far from the DM resonant mode, thus producing a desired CM rejection performance. Moreover, by introducing a mixed electromagnetic (EM) coupling, transmission zeros (TZs) are produced, significantly improving the DM isolation between the two channels. Finally, a balanced diplexer is designed and fabricated. The lower and higher channels of the diplexer are centered at 3.36 and 4.00 GHz. The DM channel isolation is better than 40/41 dB in the two passbands when the frequency ratio is less than 1.2, which is in satisfactory agreement with simulated results.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1285
Author(s):  
Pengfa Chang ◽  
Chen Wang ◽  
Hong Han ◽  
Feng Gao ◽  
Ligang Huang ◽  
...  

Based on the polarization conversion in a tapered fiber-coupled whispering gallery mode (WGM) system, a simple-structured narrow linewidth band-pass filter was fabricated and a narrow linewidth ring laser was demonstrated. With a fiber Bragg grating (FBG) to further select the resonant mode, the ring laser could be in the single-longitudinal-mode with the linewidth about 6 kHz and its wavelength could be tuned from 1540.10 nm to 1570.01 nm. Benefit from the dense modes in the WGM resonator, high conversion efficiency, and better stability of the structure, a tunable dual-wavelength laser could be achieved based on two FBGs with different resonant wavelengths. The configuration of the proposed laser is simple and stable, which will benefit its applications in the future.


Author(s):  
Leonid Yaroshenko ◽  
Roman Chubyk ◽  
Iryna Derevenko

The article analyzes and proposes an approach to the construction of a control system for electromechanical debalance vibrodrive for vibration machines based on an artificial neural network. As a result of the analysis of various methods of managing dynamic objects it is concluded that the most appropriate and perfect for this type of machine is neurocontrol method of predictive model neurocontrol, which allows to expand the functionality of these vibrating machines and significantly save energy for vibratory drive of their oscillations. A direct neuro-emulator is used to predict the future behavior of the oscillating mechanical system of the vibration technological machines and to calculate errors. An important feature of the predictive neurocontrol model in the proposed method of controlling the operation of vibrating technological machines using an artificial neural system is that there is no neurocontroller that needs to be trained, its place is taken by the optimization algorithm. Applying the proposed method of controlling operation of adaptive vibration technology machines using artificial neural network will optimize the electromechanical control of debalanced vibration drive of vibrating machines and provide optimal resonant modes of its operation (which is energy efficient) in all technological modes of vibrating operation. The technical and economic characteristics of this control method are further improved due to the fact that the proposed control method uses the technology of predictive model neurocontrol and as a result is constantly calculated (forecasted) several cycles in advance and determines the best strategy to control the frequency of forced cyclic vibration. As a result, the mechanical system of vibration machines spends less time in non-resonant mode. This method of control also minimizes the duration of transients when changing the load mass of the working body vibration or changing the mode of vibration parameters and the parameters of their technological process.


Sign in / Sign up

Export Citation Format

Share Document