A Robotic Control System for Fault Tolerance and Safety using Human Robot Interaction

Author(s):  
Luis J. Figueroa Rivera ◽  
Ariel Y. Ramos Ruiz ◽  
Balasubramaniyan Chandrasekaran
2020 ◽  
pp. 1-17
Author(s):  
Luis Roda-Sanchez ◽  
Teresa Olivares ◽  
Celia Garrido-Hidalgo ◽  
José Luis de la Vara ◽  
Antonio Fernández-Caballero

2020 ◽  
Vol 40 (4) ◽  
pp. 565-575
Author(s):  
Chengguo Zong ◽  
Zhijian Ji ◽  
Junzhi Yu ◽  
Haisheng Yu

Purpose The purpose of this paper is to study the adaptability of the tracked robot in complex working environment. It proposes an angle-changeable tracked robot with human–robot interaction in unstructured environment. The study aims to present the mechanical structure and human–robot interaction control system of the tracked robot and analyze the static stability of the robot working in three terrains, i.e. rugged terrain, sloped terrain and stairs. Design/methodology/approach The paper presents the mechanical structure and human–robot interaction control system of the tracked robot. To prevent the detachment of the tracks during obstacle navigation, a new type of passively adaptive device based on the relationship between the track’s variable angle and the forces is presented. Then three types of rough terrain are chosen to analyze the static stability of the tracked robot, i.e. rugged terrain, sloped terrain and stairs. Findings This paper provides the design method of the tracked robot. Owing to its appropriate dimensions, good mass distribution and limited velocity, the tracked robot remains stable on the complex terrains. The experimental results verify the effectiveness of the design method. Originality/value The theoretical analysis of this paper provides basic reference for the structural design of tracked robots.


2008 ◽  
Vol 5 (4) ◽  
pp. 213-223 ◽  
Author(s):  
Shuhei Ikemoto ◽  
Takashi Minato ◽  
Hiroshi Ishiguro

In this paper, we investigate physical human–robot interaction (PHRI) as an important extension of traditional HRI research. The aim of this research is to develop a motor learning system that uses physical help from a human helper. We first propose a new control system that takes advantage of inherent joint flexibility. This control system is applied on a new humanoid robot called CB2. In order to clarify the difference between successful and unsuccessful interaction, we conduct an experiment where a human subject has to help the CB2robot in its rising-up motion. We then develop a new measure that demonstrates the difference between smooth and non-smooth physical interactions. An analysis of the experiment’s data, based on the introduced measure, shows significant differences between experts and beginners in human–robot interaction.


2016 ◽  
Vol 20 (suppl. 2) ◽  
pp. 537-548 ◽  
Author(s):  
Paramin Neranon ◽  
Robert Bicker

With regard to both human and robot capabilities, human-robot interaction provides several benefits, and this will be significantly developed and implemented. This work focuses on the development of real-time external force/position control used for human-robot interaction. The force-controlled robotic system integrated with proportional integral control was performed and evaluated to ensure its reliably and timely operational characteristics, in which appropriate proportional integral gains were experimentally adopted using a set of virtual crank-turning tests. The designed robotic system is made up of a robot manipulator arm, an ATI Gamma multi-axis force/torque sensor and a real-time external PC based control system. A proportional integral controller has been developed to provide stable and robust force control on unknown environmental stiffness and motion. To quantify its effectiveness, the robotic system has been verified through a comprehensive set of experiments, in which force measurement and ALTER real-time path control systems were evaluated. In summary, the results indicated satisfactorily stable performance of the robot force/position control system. The gain tuning for proportional plus integral control algorithm was successfully implemented. It can be reported that the best performance as specified by the error root mean square method of the radial force is observed with proportional and integral gains of 0.10 and 0.005 respectively.


Sign in / Sign up

Export Citation Format

Share Document