force measurement
Recently Published Documents


TOTAL DOCUMENTS

1987
(FIVE YEARS 403)

H-INDEX

44
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Yong Yang ◽  
Meirong Zhao ◽  
Dantong Li ◽  
Moran Tao ◽  
Chunyuan Zhu ◽  
...  

<div>The precision of micro-force measurement is determined by the sensitivity of force sensors and the magnitude of environmental disturbances. Damping, a process that converts vibrational energy into heat, is one of the most effective methods of suppressing disturbances. Inspired by the shadow formed at a pond when water striders walked on the water, a bionic viscoelastic-polymer micro-force (VPMF) sensor with a high damping ratio based on the shadow method was developed. In the VPMF sensor, the surface of the polymer was deformed by the contact of a cylindrical flat punch when the sensor was subjected to a normal force. A shadow with a bright edge was formed due to the refraction that parallel light went through the deformed surface. The force was in proportion to the change of the shadow diameter. The sensor optimal sensitivity was 2.15 μN/pixel and the measurement range was 0.981 mN. The damping ratio of the VPMF sensor was 0.22 on account of viscoelasticity, which could suppress disturbances effectively. The VPMF sensor could reduce the influence of disturbances by about 96.23% compared to the cantilever. The present study suggests that the VPMF sensor is hopefully applied to the reliable measurement of micro force under complex environments.</div>


Sensor Review ◽  
2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xiang Li ◽  
Keyi Wang ◽  
Yan Lin Wang ◽  
Kui Cheng Wang

Purpose Plantar force is the interface pressure existing between the foot plantar surface and the shoe sole during static or dynamic gait. Plantar force derived from gait and posture plays a critical role for rehabilitation, footwear design, clinical diagnostics and sports activities, and so on. This paper aims to review plantar force measurement technologies based on piezoelectric materials, which can make the reader understand preliminary works systematically and provide convenience for researchers to further study. Design/methodology/approach The review introduces working principle of piezoelectric sensor, structures and hardware design of plantar force measurement systems based on piezoelectric materials. The structures of sensors in plantar force measurement systems can be divided into four kinds, including monolayered sensor, multilayered sensor, tri-axial sensor and other sensor. The previous studies about plantar force measurement system based on piezoelectric technology are reviewed in detail, and their characteristics and performances are compared. Findings A good deal of measurement technologies have been studied by researchers to detect and analyze the plantar force. Among these measurement technologies, taking advantage of easy fabrication and high sensitivity, piezoelectric sensor is an ideal candidate sensing element. However, the number and arrangement of the sensors will influence the characteristics and performances of plantar force measurement systems. Therefore, it is necessary to further study plantar force measurement system for better performances. Originality/value So far, many plantar force measurement systems have been proposed, and several reviews already introduced plantar force measurement systems in the aspect of types of pressure sensors, experimental setups for foot pressure measurement analysis and the technologies used in plantar shear stress measurements. However, this paper reviews plantar force measurement systems based on piezoelectric materials. The structures of piezoelectric sensors in the measurement systems are discussed. Hardware design applied to measurement system is summarized. Moreover, the main point of further study is presented in this paper.


2022 ◽  
Author(s):  
Yong Yang ◽  
Meirong Zhao ◽  
Dantong Li ◽  
Moran Tao ◽  
Chunyuan Zhu ◽  
...  

<div>The precision of micro-force measurement is determined by the sensitivity of force sensors and the magnitude of environmental disturbances. Damping, a process that converts vibrational energy into heat, is one of the most effective methods of suppressing disturbances. Inspired by the shadow formed at a pond when water striders walked on the water, a bionic viscoelastic-polymer micro-force (VPMF) sensor with a high damping ratio based on the shadow method was developed. In the VPMF sensor, the surface of the polymer was deformed by the contact of a cylindrical flat punch when the sensor was subjected to a normal force. A shadow with a bright edge was formed due to the refraction that parallel light went through the deformed surface. The force was in proportion to the change of the shadow diameter. The sensor optimal sensitivity was 2.15 μN/pixel and the measurement range was 0.981 mN. The damping ratio of the VPMF sensor was 0.22 on account of viscoelasticity, which could suppress disturbances effectively. The VPMF sensor could reduce the influence of disturbances by about 96.23% compared to the cantilever. The present study suggests that the VPMF sensor is hopefully applied to the reliable measurement of micro force under complex environments.</div>


2022 ◽  
Vol 10 (1) ◽  
pp. 70
Author(s):  
Yibing Zhao ◽  
Canjun Yang ◽  
Yanhu Chen ◽  
Jia Li ◽  
Siyue Liu ◽  
...  

In order to adhere to the wall stably in an underwater environment, a vortex suction cup that injects high-pressure water inside via two axisymmetrically side-distributed inlets to create a negative pressure area in the center is the necessary component for the underwater climbing robot (UCR). However, the suction force of this vortex suction cup is reduced and periodically unstable due to unstable cavitation. The aim of this paper is to propose a cavitation reduction optimization method for vortex suction cups and to verify the effectiveness of the optimization. Analyses of this vortex flow, including streamlines, pressure, and cavitation number fluctuations, were carried out by the introduced computational fluid dynamics (CFD) simulating methods based on the multiphase RNG k−ε model to study the periodic fluctuations of the suction force of the original suction cup and the optimized ones. Force measurement and vortex observation experiments were conducted to compare the suction force of the original vortex suction cup and the optimized suction cup, as well as the cavitation and pressure fluctuation phenomenon. Results of simulation and experiments prove the existence of the effect of vortex cavitation on the suction performance and verify the rationality of optimization as well.


2022 ◽  
Vol 185 ◽  
pp. 108357
Author(s):  
Yongmeng Liu ◽  
Junjie Zhi ◽  
Enxiao Liu ◽  
Yuanlin Chen ◽  
Xiaoming Wang ◽  
...  

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 220
Author(s):  
Jinxia Gao ◽  
Longjun Liu ◽  
Zhiwen Su ◽  
Haitao Wang

Bite force measurement is an important parameter when checking the function and integrity of the masticatory system, whereas it is currently very difficult to measure bite force during functional movement. Hence, the purpose of this study is to explore the potential technique and device for the measurement and intervention of the continuous bite forces on functional and dynamic occlusal condition. A portable biosensor by sandwich technique was designed, and the validity, reliability, and sensitivity were determined by mechanical pressure loading tests; meanwhile, the pressure signal is acquired by, and transmitted to, voltage changes by the electrical measurements of the sensors. The result is that, when the mechanical stress detection device is thicker than 3.5 mm, it shows relatively ideal mechanical properties; however, when the thickness is less than 3.0 mm, there is a risk of cracking. Mechanical stress changing and voltage variation had a regularity and positive relationship in this study. The mechanical stress-measuring device made by medical and industrial cross has a good application prospect for the measurement of bite force during function.


Sign in / Sign up

Export Citation Format

Share Document