Stability estimates for composite identification-and-control maps related to a distributed parameter system

Author(s):  
G. Crosta
2014 ◽  
Vol 22 (1) ◽  
pp. 63-68
Author(s):  
M. Mendel ◽  
T. Kovács ◽  
G. Hulkó

AbstractPollution of groundwater requires the implementation of appropriate solutions which can be deployed for several years. The case of local groundwater contamination and its subsequent spread may result in contamination of drinking water sources or other disasters. This publication aims to design and demonstrate control of pumping wells for a model task of groundwater remediation. The task consists of appropriately spaced soil with input parameters, pumping wells and control system. Model of controlled system is made in the program MODFLOW using the finitedifference method as distributed parameter system. Control problem is solved by DPS Blockset for MATLAB & Simulink.


Author(s):  
Alexander V. Pesterev ◽  
Lawrence A. Bergman

Abstract The problem of calculating the dynamic response of a one-dimensional distributed parameter system excited by an oscillator traversing the system with an arbitrarily varying speed is investigated. An improved series representation for the solution is derived that takes into account the jump in the shear force at the point of the attachment of the oscillator, which makes it possible to efficiently calculate the distributed shear force and, where applicable, bending moment. The improvement is achieved through the introduction of the “quasi-static” solution, an approximation to the desired one, which makes it possible to apply to the moving oscillator problem the “mode-acceleration” technique conventionally used for acceleration of series in problems related to the steady-state vibration of distributed systems. Numerical results illustrating the efficiency of the method are presented.


Sign in / Sign up

Export Citation Format

Share Document