Optimal control design with preview for semi-active suspension on a half-vehicle model

Author(s):  
D. Martinus ◽  
B. Soenarko ◽  
Y.Y. Nazaruddin
2013 ◽  
Vol 464 ◽  
pp. 229-234 ◽  
Author(s):  
Bruno Sousa Carneiro da Cunha ◽  
Fábio Roberto Chavarette

In this paper we study the behavior of a semi-active suspension witch external vibrations. The mathematical model is proposed coupled to a magneto rheological (MR) damper. The goal of this work is stabilize of the external vibration that affect the comfort and durability an vehicle, to control these vibrations we propose the combination of two control strategies, the optimal linear control and the magneto rheological (MR) damper. The optimal linear control is a linear feedback control problem for nonlinear systems, under the optimal control theory viewpoint We also developed the optimal linear control design with the scope in to reducing the external vibrating of the nonlinear systems in a stable point. Here, we discuss the conditions that allow us to the linear optimal control for this kind of non-linear system.


Author(s):  
S-H Chen ◽  
W-H Ho ◽  
J-H Chou ◽  
S-K Lin

By integrating the robust stabilizability condition, the orthogonal functions approach (OFA), and the hybrid Taguchi-genetic algorithm (HTGA), an integrative method is presented in this paper to design a robust-stable and quadratic optimal controller such that (a) the active suspension system with elemental parametric uncertainties can be robustly stabilized, and (b) a quadratic finite-horizon integral performance index for the nominal active suspension system can be minimized. In this paper, the robust stabilizability condition is proposed in terms of linear matrix inequalities (LMIs). Based on the OFA, an algebraic algorithm involving only algebraic computation is derived in this paper for solving the nominal active suspension feedback dynamic equations. By using the OFA and the LMI-based robust stabilizability condition, the dynamic optimization problem for the robust-stable and quadratic optimal control design of the linear uncertain active suspension system is transformed into a static-constrained optimization problem represented by algebraic equations with the constraint of the LMI-based robust stabilizability condition; thus greatly simplifying the robust-stable and quadratic optimal control design problem of the linear uncertain active suspension system. Then, for the static-constrained optimization problem, the HTGA is employed to find the robust-stable and quadratic optimal controllers of the linear uncertain active suspension system. A design example is given to demonstrate the applicability of the proposed integrative approach.


2019 ◽  
Vol 11 (2) ◽  
pp. 55
Author(s):  
Nur Uddin

The optimal control design of the ground-vehicle active suspension system is presented. The active suspension system is to improve the vehicle ride comfort by isolating vibrations induced by the road profile and vehicle velocity. The vehicle suspension system is approached by a quarter car model. Dynamic equations of the system are derived by applying Newton’s second law. The control law of the active suspension system is designed using linear quadratic regulator (LQR) method. Performance evaluation is done by benchmarking the active suspension system to a passive suspension system. Both suspension systems are simulated in computer. The simulation results show that the active suspension system significantly improves the vehicle ride comfort of the passive suspension system by reducing 50.37% RMS of vertical displacement, 45.29% RMS of vertical velocity, and 1.77% RMS of vertical acceleration.


Sign in / Sign up

Export Citation Format

Share Document