mr damper
Recently Published Documents


TOTAL DOCUMENTS

830
(FIVE YEARS 162)

H-INDEX

26
(FIVE YEARS 4)

2021 ◽  
Vol 12 (1) ◽  
pp. 400
Author(s):  
Quoc-Viet Luong ◽  
Bang-Hyun Jo ◽  
Jai-Hyuk Hwang ◽  
Dae-Sung Jang

This paper adopts an intelligent controller based on supervised neural network control for a magnetorheological (MR) damper in an aircraft landing gear. An MR damper is a device capable of adjusting the damping force by changing the magnetic field generated in electric coils. Applying an MR damper to the landing gears of an aircraft could minimize the impact at landing and increase the impact absorption efficiency. Various techniques proposed for controlling the MR damper in aircraft landing gears require information on the damper force or the mass of the aircraft to determine optimal parameters and control commands. This information is obtained by estimation with a model in a practical operating environment, and the accompanying inaccuracies cause performance degradation. Machine learning-based controllers have also been proposed to address model dependency but require a large number of drop test data. Unlike simulations, which can conduct a large number of virtual drop tests, the cost and time are limited in the actual experimental environment. Therefore, a neural network controller with supervised learning is proposed in this paper to simulate the behavior of a proven controller only with system states. The experimental data generated by applying the hybrid controller with the exact mass and force information, which has demonstrated high performance among the existing techniques, are set as the target for supervised learning. To verify the effectiveness of the proposed controller, drop test experiments using the intelligent controller and the hybrid controller with and without exact information about aircraft mass and force are executed. The experimental results from the drop tests of a landing gear show that the proposed controller maintains superior performance to the hybrid controller without using explicit damper models or any information on the aircraft mass or strut force.


Author(s):  
Olivier Munyaneza ◽  
Jung Woo Sohn

This paper describes the design, simulation, and performance evaluation of hybrid MR damper on quarter bus semi-active seat suspension coupled with human biodynamic model. Also, the whole body vibration (WBV) exposures were evaluated based on the international standard ISO 2631 (1997), and its parameters were used to measure the level of discomfort for bus drivers. The hybrid MR damper was proposed to enhance the damping force within low current supplied and achieve a fail-soft capability in case of electrical failure. The characteristics of the proposed hybrid MR damper were compared to the conventional MR damper by considering the same size, materials, and current input. The designed damper was incorporated to seat suspension system coupled with biodynamic lumped model, and the governing equations of motion of the full model were derived. Skyhook controller was used to control the amount of current to be supplied to hybrid MR damper. The controlled semi-active hybrid MR and conventional MR seat suspension are compared to uncontrolled system for two types of road excitation. The simulated results show that the driver seat comfort was improved by the skyhook controller than the uncontrolled case. The evaluated WBV showed that the hybrid MR damper can improve the driver life from fairly uncomfortable to little discomfort.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Shaopei Hu ◽  
Chao Su ◽  
Mingjiao Yan ◽  
Yang Yang ◽  
Jiawei Bai ◽  
...  

With the continuous development of hydropower stations, the capacities and the heads of hydro generator units are increasing, and the plant vibration problem is becoming more and more serious. A numerical simulation method for the vibration reduction control of magnetorheological (MR) dampers suitable for large-scale complex structures was proposed. The method is simple and easy to implement, and the semiactive control of the MR damper could be achieved by adjusting the current switch and size. On the basis of a numerical simulation, a mathematical model for the optimal layout of an MR damper device was established. The objective function was the vertical velocity and the vertical acceleration response of the generator floor. The results showed that the proposed semiactive control numerical simulation method could be applied to the vibration control of the hydropower plant structure, and the vertical velocity and vertical acceleration were reduced by 10.96% and 12.90%, respectively, compared with those without structural vibration control. At the same time, the proposed optimized layout method was effective and feasible, and the damping effect of the MR damper could be effectively improved through the optimized layout.


2021 ◽  
Vol 11 (22) ◽  
pp. 10925
Author(s):  
Gang Li ◽  
Zhiyong Ruan ◽  
Ruiheng Gu ◽  
Guoliang Hu

In order to reduce vehicle vibration during driving conditions, a fuzzy sliding mode control strategy (FSMC) for semi-active air suspension based on the magnetorheological (MR) damper is proposed. The MR damper used in the semi-active air suspension system was tested and analyzed. Based on the experimental data, the genetic algorithm was used to identify the parameters of the improved hyperbolic tangent model, which was derived for the MR damper. At the same time, an adaptive neuro fuzzy inference system (ANFIS) was used to build the reverse model of the MR damper. The model of a quarter vehicle semi-active air suspension system equipped with a MR damper was established. Aiming at the uncertainty of the air suspension system, fuzzy control was used to adjust the boundary layer of the sliding mode control, which can effectively suppress the influence of chattering on the control accuracy and ensure system stability. Taking random road excitation and impact road excitation as the input signal, the simulation analysis of passive air suspension, semi-active air suspension based on SMC and FSMC was carried out, respectively. The results show that the semi-active air suspension based on FSMC has better vibration attenuating performance and ride comfort.


Author(s):  
Xiong Deng ◽  
Xiaomin Dong ◽  
Jianwei Xing ◽  
Wenfeng Li ◽  
Jun Xi

Abstract Whole-satellite vibration isolation system with magneto-rheological (MR) damper is a new idea to solve the problem of small amplitude and medium-high frequency vibration. However, it also brings challenges to MR technology, wherein the super hysteresis and variable stiffness properties of MR damper are lack of research. Considering the particularity of MR damper under small amplitude and medium-high frequency conditions, the MR damper is identified by employing an improved Bingham model, then dynamic characteristics of the whole-satellite system are analyzed by nonlinear bifurcation theory, and then the nonlinear analysis method of MR whole-satellite system with variable parameters is proposed. To verify the effectiveness of the nonlinear analysis method of MR whole-satellite system with variable parameters, the influence of bifurcation parameters on the system parameters is analyzed qualitatively and quantitatively, then time histories and phase diagrams of fixed-parameter and parameter-varying MR whole-satellite system are compared. The analysis suggests that the improved Bingham model adequately characterizes the strong nonlinear hysteretic and variable stiffness behavior of the MR damper. Moreover, the comparison results illustrate that the time histories and phase portraits of the parameter-varying system are in good agreement with those of different fixed-parameter system, and the parameter-varying system has good adaptability in the selected range of bifurcation parameters. This study provides a basis for the design of structural parameters and the optimization of control strategy for MR whole-satellite system.


Author(s):  
Gaoyu Liu ◽  
Fei GAO ◽  
Wei-Hsin Liao

Abstract Making full use of the magnetically controllable rheological properties of magnetorheological (MR) fluid, MR actuators have been applied in many engineering fields. To adapt to different application scenarios, parameters of MR actuators often need to be optimized. Previous MR actuator optimization was focused on finding optimal combinations of geometric dimensions and physical parameters that meet certain requirements. The parts with optimized dimensions were still in regular shape, which might not bring optimal damping performance. Therefore, in this paper, shape optimization of MR damper piston based on parametric curve is performed for the first time. First, the regional magnetic saturation problem in the previous prototype is stated. Then, the MR damper with normal piston is simulated as a reference. Later, Bezier curve, one of the typical parametric curves, is used to form the piston with optimized parameters, and the MR damper with optimized piston is also simulated. Finally, prototypes of the MR dampers with normal and optimized pistons are fabricated and tested. Compared with the MR damper with normal piston, the one with optimized piston has larger field dependent force and total damping force under relatively large current, with about 52% and 24% maximum increasing percentage, respectively. The controllable force range of the MR damper with optimized piston is also larger than that with normal piston.


Author(s):  
Xiong Deng ◽  
Xiaomin Dong ◽  
Wenfeng Li ◽  
Jun Xi

Owing to the complex nonlinear hysteresis of magnetorheological (MR) damper, the modeling of an MR damper is an issue. This paper examines a novel MR damper hysteresis model based on the grey theory, which can fully mine the internal laws for the data with small samples and poor information. To validate the model, the experiment is conducted in the MTS platform, and then the experimental results are compiled to identify the model parameters. Considering the complexity of the grey model and its inverse model solution, the grey model is simplified in two ways based on the grey relational analysis method. Furthermore, the simplified grey model compares to other models to prove the superiority of the grey model. The analysis suggests the fitting results correspond to the measured results, and the mean relative error (MRE) of grey model is within 2.04%. After the grey model is simplified, its accuracy is slightly reduced, while its inverse model is easier to solve and makes a unique solution. Finally, compared with the polynomial and Bouc-Wen model, the novel model with fewer identification parameters has high accuracy and predictive ability. This novel model has fabulous potential in designing the control strategy of MR damper.


Author(s):  
Fanghui Xu ◽  
Dawei Dong ◽  
Yan Huang ◽  
Rui Zhang ◽  
Shizhe Song ◽  
...  

The diesel multiple unit (DMU) has been widely used in high-speed railway service due to its flexibility and economy. Considering the broadband and complex vibration generated by DMU power package, the advanced semi-active suspension with magnetorheological (MR) dampers is introduced to promote anti-vibration performance. In this work, a comprehensive optimal design approach for MR damper used in DMU power package is proposed. Quasi-static modeling process is conducted to obtain MR damper's low-frequency outputs, while its high-frequency damping forces are calculated by physical modeling considering the fluid compressibility and piston assembly inertia. Then the objective functions and optimization variables are determined. Based on response surface and linear correlation analysis, the influence of the optimal variables on the objective functions is discussed. Using reference-point based nondominated sorting approach (NSGA-III), the evolutionary many-objective optimization is conducted. In addition, magnetic design is incorporated into the optimal process to ensure the magnetic flux density in the effective working area. Finally, an optimized MR damper prototype is manufactured and tested. By comparing the experimental damping force with calculated results in both low-frequency and high-frequency ranges, the effectiveness of the presented optimal method for MR dampers is validated.


Author(s):  
Pei Pei ◽  
Yongbo Peng ◽  
Canxing Qiu

A systematic modeling study is conducted to predict the dynamic response of magnetorheological (MR) damper based on a refined constitutive model for MR fluids. A particle-level simulation method is first employed to probe the microstructured behavior and rheological properties of MR fluids, based on which the refined constitutive model is developed. The constitutive model is further validated by comparing the predicted results with the data obtained from microscopic simulations and existing experiments. It is revealed that the proposed constitutive model has comparable accuracy and good applicability in representing MR fluids. Subsequently, a computational fluid dynamics (CFD) model is established to explore MR damper’s behavior by using the proposed constitutive model to describe the fluid rheology. For better capturing the dynamic hysteretic behavior of MR damper, a modified parametric model is developed by combing the Bingham plastic model and the proposed constitutive model. The modified model for MR damper shows its validity and superiority over the existing Bingham plastic models.


Sign in / Sign up

Export Citation Format

Share Document