quarter car model
Recently Published Documents


TOTAL DOCUMENTS

227
(FIVE YEARS 60)

H-INDEX

20
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Christian Torrico ◽  
Orlando Torrico

In the last decade, the design and the construction of concrete pavements in Bolivia focused on prevention of fatigue damage of concrete by the design and construction of locally named "semi-short slabs" concrete pavements, a solution with slab size between traditional JPCP and short slab concrete pavements. Although the structural performance of these new pavements is adequate so far, it was observed that the length of the slab, which commonly is between 2.4 to 3.0 m, affects functional performance. Because of the slabs are affected by differential drying shrinkage, they develop permanent curling with wavelengths that have more influence on IRI with respect to other lengths due to the sensitivity of the Quarter-Car model. This article describes the studies conducted to determine the slab curling influence on IRI of concrete pavements built with semi-short slabs in the last years in the Bolivian Altiplano. Longitudinal profile data was collected by means of a laser profilometer in highway sections located in western Bolivia, in regions with high altitudes and arid climate. Based on profile information, mechanistic analyses were done in order to estimate the theoretical deflections along the slabs that correspond to the observed curling. Deflections calculated were then used to estimate a Pseudo Strain Gradient that represent the effects of curling along the evaluated sections. IRI related to slabs curling was calculated and compared to IRI calculated from artificially generated profiles for various slab lengths. Results indicate that slab curling of these pavements has an important influence on IRI of evaluated sections. Recommendations for specifications of new construction projects are presented.


Author(s):  
Hamid Hussain Hadwan ◽  
Mushrek Alawi Mahdi ◽  
Ahmed Waleed Hussein

This paper exhibits a study of car passive and active- suspension system to improving drive exhilarate to passengers while also enhancing vehicle stability by decreasing the effect of oscillation on the suspension. Modeling and simulation by using the bond diagram. They much concede a prime arrangement of the machine to the exterior surrounding: street quality, atmospherically circumstances, while guarantying driver as well as passengers, major safeness and more potentially exhilarate. Automotive aid it course manners. The result cleared this action plan at different set during the vehicle mean, but particularly in evolution level. It is also clear the proportion of suspension system's mass to the vehicle's mass. Also graphical representation of suspension system' parameters like vertical passenger displacement, potential energy of mass of suspension system and acceleration. To foretell the comportment of a car, it is necessary to make design, modeling, and simulation. Honda Civic Lx 2019 sedan car has used for modeling, and simulation.


2021 ◽  
Vol 4 (1) ◽  
pp. 119-128
Author(s):  
Mehmet Akif Koç

In this study 3-DOF quarter car model with the three bumps on the rigid road, the assumption has been modeled with the non-random irregularity. To reduce the excessive vibrations occurred on the vehicle body, an active suspension system with the linear actuator has been considered. Moreover, to control this actuator, an adaptive neuro-fuzzy algorithm is designed. The training and testing data of the ANFIS has been obtained from Proportional Integral Derivative (PID) control algorithm. After that the successful training process, a testing procedure has been applied to ANFIS for the measure of the adaptive neuro-fuzzy system with data that are not considered in the training process. Then, the performance of the ANFIS is compared by the PID algorithm and passive suspension system in terms of vehicle body vertical acceleration, vehicle body vertical displacement, and control force. The road model used in the study has been modeled according to non-random road profile mathematical formulation considering periodical and discrete road profile cases. In this formulation, one can easily determine the height, width, and number of the road defect with the series mathematical formulation. Consequently, with the results obtained from the presented study, it is proven that ANFIS is a very effective controlling algorithm to suppress vibration occurred on the vehicle body due to vehicle road interaction. Furthermore, the performance of the ANFIS has been tested with different parameters, for example, different number membership functions (MF), which used the fuzzification of the input parameters.


Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2533
Author(s):  
Daniel Rodriguez-Guevara ◽  
Antonio Favela-Contreras ◽  
Francisco Beltran-Carbajal ◽  
David Sotelo ◽  
Carlos Sotelo

The control of an automotive suspension system by means of a hydraulic actuator is a complex nonlinear control problem. In this work, a Linear Parameter Varying (LPV) model is proposed to reduce the complexity of the system while preserving the nonlinear behavior. In terms of control, a dual controller consisting of a Model Predictive Control (MPC) and a Linear Quadratic Regulator (LQR) is implemented. To ensure stability, Quadratic Stability conditions are imposed in terms of Linear Matrix Inequalities (LMI). Simulation results for quarter-car model over several disturbances are tested in both frequency and time domain to show the effectiveness of the proposed algorithm.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yujie Shen ◽  
Mengqi Jia ◽  
Kai Yang ◽  
Zhong Chen ◽  
Long Chen

This paper concerns the optimal problem of the vehicle ISD (inerter-spring-damper) suspension based on the asymmetric-damping effect. In order to explore the benefits of the asymmetric damping, a quarter car model of the four-element ISD suspension is built by considering the symmetric and asymmetric reciprocating damping factors. The parameters of the proposed vehicle ISD suspension with symmetric-damping and asymmetric-damping features are optimized by means of the genetic algorithm in single-objective scenario and multiobjective scenario, respectively. The dynamic performances are analyzed through simulations in time and frequency domains, and the impacts of the compression and tensile damping on the body acceleration, the suspension working space, and the dynamic tire load are discussed. Results indicate that, compared with the conventional passive suspension, the proposed ISD suspensions manifest excellent vibration isolation performance, and the asymmetric reciprocating damping ISD suspension even showcases extra improving space of the dynamic performances except for the dynamic tire load in the impulse input condition. It seems that the dynamic performance of the vehicle ISD suspension will be much superior when considering the asymmetric reciprocating damping factors.


2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Lawrence Atepor ◽  

Chaotic Vibrations are considered for a quarter-car model excited by the road surface profile. The equation of motion is obtained in the form of a classical Duffing equation and it is modeled with deliberate introduction of parametric excitation force term to enable us manipulate the behavior of the system. The equation of motion is solved using the Method of Multiple Scales. The steady-state solutions with and without the parametric excitation force term is investigated using NDSolve MathematicaTM Code and the nonlinear dynamical system’s analysis is by a study of the Bifurcations that are observed from the analysis of the trajectories, and the calculation of the Lyapunov. In making the system more strongly nonlinear the excitation amplitude value is artificially increased to various multiples of the actual value. Results show that the system’s response can be extremely sensitive to changes in the amplitude and the that chaos is evident as the system is made more nonlinear and that with the introduction of parametric excitation force term the system’s motion becomes periodic resulting in the elimination of chaos and the reduction in amplitude of vibration.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1165
Author(s):  
Bradley Dean Collins ◽  
Stephan Heyns ◽  
Schalk Kok ◽  
Daniel Nico Wilke

Response reconstruction is used to obtain accurate replication of vehicle structural responses of field recorded measurements in a laboratory environment, a crucial step in the process of Accelerated Destructive Testing (ADA). Response Reconstruction is cast as an inverse problem whereby an input signal is inferred to generate the desired outputs of a system. By casting the problem as an inverse problem we veer away from the familiarity of symmetry in physical systems since multiple inputs may generate the same output. We differ in our approach from standard force reconstruction problems in that the optimisation goal is the recreated output of the system. This alleviates the need for highly accurate inputs. We focus on offline non-causal linear regression methods to obtain input signals. A new windowing method called AntiDiagonal Averaging (ADA) is proposed to improve the regression techniques’ performance. ADA introduces overlaps within the predicted time signal windows and averages them. The newly proposed method is tested on a numerical quarter car model and shown to accurately reproduce the system’s outputs, which outperform related Finite Impulse Response (FIR) methods. In the nonlinear configuration of the numerical quarter car, ADA achieved a recreated output Mean Fit Function Error (MFFE) score of 0.40% compared to the next best performing FIR method, which generated a score of 4.89%. Similar performance was shown for the linear case.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Claudia Carolina Vaca García ◽  
Luis Adrián Ferré Covantes ◽  
Antonio Navarrete Guzmán ◽  
Claudia Verónica Vera Vaca ◽  
Cuauhtémoc Acosta Lúa

The antilock braking system (ABS) is an electromechanical device whose controller is challenging to design because of its nonlinear dynamics and parameter uncertainties. In this paper, an adaptive controller is considered under the assumption that the friction coefficient is unknown. A modified high-order sliding-mode controller is designed to enhance the controller performance. The controller ensures tracking of the desired reference and identifies the unknown parameter, despite parametric variations acting on the real system. The stability proof is done using the Lyapunov approach. Some numerical and experimental tests evaluate the controller on a mechatronic system that represents a quarter-car model.


Vehicles ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 300-329
Author(s):  
Danilo D’Andrea ◽  
Giacomo Risitano ◽  
Ernesto Desiderio ◽  
Andrea Quintarelli ◽  
Dario Milone ◽  
...  

The aim of this paper is the development of a 7-DOF (Degrees Of Freedom) mathematical model of an IndyCar and the implementation of an Artificial Neural Network in order to predict the optimal setup parameters of the car, reducing time and costs for race teams. The mathematical model is created by using MATLABTM and Simulink software starting from a telemetry acquisition at the Houston circuit and is based on Vertical Vehicle Dynamic equations. The optimal setup parameters have been predicted through an Artificial Neural Network (ANN) by using the NFTOOL Toolbox of MATLABTM software. ANN is implemented in a Quarter Car model, firstly, in order to train the network and predict the parameters able to reduce tire deflection and suspension travel in the time domain and the resonance peaks amplitude in the frequency domain. Then, it is implemented in the 7-DOF model in order to predict the best setup parameters able to reduce body movements and the weight transfers of the car.


2021 ◽  
Vol 21 (2) ◽  
pp. 1-6
Author(s):  
Mustafa Mohammed Matrood ◽  
Ameen Ahmed Nassar

The purpose of this research is to control a quarter car suspension system and also to reduce the fluctuated movement caused by passing thevehicle over road bump using modified PID (Proportional Integral and Derivative) controller. The proposed controller deals with dual loopfeedback signals instead of single feedback signal as in the conventional PID controller. The structure of the modified PID controller wascreated by moving the proportional and derivative actions in the feedback path while remaining the integral action in the forward path. Thus,high accuracy results were obtained. Firstly, modelling and simulation of linear passive suspension system for a quarter car system wasperformed using Matlab – Simulink software. Then the linear suspension system was activated and simulated by using an active hydraulicactuator to generate the necessary force which can be regulated and controlled by the proposed controller. The performance of whole systemhas been enhanced with a modified PID controller.


Sign in / Sign up

Export Citation Format

Share Document