Image Encryption Based on Logistic Chaotic Map for Secure Communications

Author(s):  
M. T. Rodriguez-Sahagun ◽  
J. B. Mercado-Sanchez ◽  
D. Lopez-Mancilla ◽  
R. Jaimes-Reategui ◽  
J. H. Garcia-Lopez
2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Qiang Zhang ◽  
Xianglian Xue ◽  
Xiaopeng Wei

We present a novel image encryption algorithm based on DNA subsequence operation. Different from the traditional DNA encryption methods, our algorithm does not use complex biological operation but just uses the idea of DNA subsequence operations (such as elongation operation, truncation operation, deletion operation, etc.) combining with the logistic chaotic map to scramble the location and the value of pixel points from the image. The experimental results and security analysis show that the proposed algorithm is easy to be implemented, can get good encryption effect, has a wide secret key's space, strong sensitivity to secret key, and has the abilities of resisting exhaustive attack and statistic attack.


2011 ◽  
Vol 341-342 ◽  
pp. 720-724 ◽  
Author(s):  
Wang Sheng Fang ◽  
Lu Lu Wu ◽  
Rong Zhang

One of the main purpose of the watermark preprocessing is to improve the robustness and security. For this reason,this paper presents an image encryption algorithm, which combines position scrambling and gray scrambling scrambled according to Arnold transform.Then all of the pixels of each sub-block are scambled by the algorithm based on Logistic chaotic map.Finally, all of the Pixels are redistributed and scrambled totally.Basing on image location scrambling,it takes advantage of multi-dimensional Arnold transformation and Logistic chaotic map, image gray scrambling is achieved. By histogram analysis,key sensitivity anslysis and correlation analysis of adjacent pixels of the results of the simulation, indicating that the scrambling effect of the algorithm is good,and the key space is large.


Entropy ◽  
2018 ◽  
Vol 20 (12) ◽  
pp. 974 ◽  
Author(s):  
Xiaoling Huang ◽  
Guodong Ye

An image encryption algorithm is presented in this paper based on a chaotic map. Different from traditional methods based on the permutation-diffusion structure, the keystream here depends on both secret keys and the pre-processed image. In particular, in the permutation stage, a middle parameter is designed to revise the outputs of the chaotic map, yielding a temporal delay phenomena. Then, diffusion operation is applied after a group of random numbers is inserted into the permuted image. Therefore, the gray distribution can be changed and is different from that of the plain-image. This insertion acts as a one-time pad. Moreover, the keystream for the diffusion operation is designed to be influenced by secret keys assigned in the permutation stage. As a result, the two stages are mixed together to strengthen entirety. Experimental tests also suggest that our algorithm, permutation– insertion–diffusion (PID), performs better when expecting secure communications for images.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 14081-14098 ◽  
Author(s):  
Hegui Zhu ◽  
Yiran Zhao ◽  
Yujia Song

2019 ◽  
Vol 8 (S1) ◽  
pp. 70-73
Author(s):  
P. Sridevi ◽  
J. Suguna

Nowadays transmission of data over the network is increasing and the data can be in the format of text, image, audio and video. Images are widely used in maximum applications of daily life. Image encryption is one of the most recent area of research to meet the demand during image transmission. Transformation of image from one form to erroneous form is called as image encryption. So, it can be secured from unauthorized users. The security of encrypted image is completely dependent on two important aspects i.e. the strength of the cryptographic algorithm and the confidentiality of the key. This paper proposes an algorithm of image encryption based on 3D Arnold cat map combined with logistic chaotic map. To evaluate the security of the encrypted image of this scheme, key space analysis and differential attack are performed. Several test images are used to demonstrate the validity of the proposed encryption algorithm. The experiment result shows that the proposed algorithm provides an efficient and secure approach to real-time image encryption and transmission.


Sign in / Sign up

Export Citation Format

Share Document