Finite-time stability analysis of switched nonlinear systems with finite-time unstable subsystems

Author(s):  
Xiangze Lin ◽  
Xueling Li ◽  
Shihua Li ◽  
Yun Zou
2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Bin Zhang

The finite-time stability is investigated for switched nonlinear systems. It is assumed that each subsystem possesses a positive homogeneous Lyapunov-like function. The derivative of the function is with hybrid homogenous degrees. Three substantially different situations are considered and different sufficient conditions are provided, respectively. The utility of our result is illustrated through the study of a numerical example.


2019 ◽  
Vol 42 (6) ◽  
pp. 1215-1224
Author(s):  
Ronghao Wang ◽  
Jianchun Xing ◽  
Zhengrong Xiang ◽  
Qiliang Yang

Finite-time stability and stabilization for switched nonlinear systems has been investigated in the paper. Based on existing works, we find that related results on autonomous switched nonlinear systems cannot be simply extended to non-autonomous systems. A sufficient condition has been proposed for this class of systems using the average dwell time method. Specifically, a control Lyapunov function approach is employed to stabilize the system and the finite-time controller is designed using a small control property. In contrast to autonomous switched systems, a finite-time stabilizer is constructed for time-varying switched nonlinear systems, even under the situation in which the switching mode is different between the system and the controller. Furthermore, the relation between the settling time and the average dwell time has been revealed. Finally, an example case is presented for the obtained result.


Sign in / Sign up

Export Citation Format

Share Document