A New Method for Characteristic Analysis of Gravity and Aeromagnetic Anomaly Data Based on Intelligent Clustering-FASAGA

Author(s):  
Mingli Yang ◽  
Linfu Xue ◽  
Xiangjin Ran ◽  
Haijun Wang
2014 ◽  
Vol 628 ◽  
pp. 171-176
Author(s):  
Xiao Hui Song ◽  
Xia Feng ◽  
Zhi Zhong Guo ◽  
Jun Feng Di

This paper presents a new method to locate partial discharge source of transformer single-winding with the transformer single-winding model and Matlab software simulation. This transformer single-winding model is composed of 300m long wire, which is equivalent to the parameter model composed of only capacitors and inductors through the frequency characteristic analysis of transformer winding. In the process of simulation, the bushing and neutral point current of transformer winding are measured when partial discharge occurs in different position. Then we can get position factor related to the current mean and variance measured through calculation, analysis and deduction. Accordingly the position of partial discharge can be found by corresponding relation. This simulation indicates that this method is effective and practical.


2011 ◽  
Vol 18 (4) ◽  
pp. 597-606 ◽  
Author(s):  
Hongshan Nie ◽  
Zhijian Huang

A New Method of Line Feature Generalization Based on Shape Characteristic Analysis This paper presents a piecewise line generalization algorithm (PG) based on shape characteristic analysis. An adaptive threshold algorithm is used to detect all corners, from which key points are selected. The line is divided into some segments by the key points and generalized piecewise with the Li-Openshaw algorithm. To analyze the performance, line features with different complexity are used. The experimental results compared with the DP algorithm and the Li-Openshaw algorithm show that the PG has better performance in keeping the shape characteristic with higher position accuracy.


2019 ◽  
Vol 11 (3) ◽  
pp. 237 ◽  
Author(s):  
Katy Burrows ◽  
Richard J. Walters ◽  
David Milledge ◽  
Karsten Spaans ◽  
Alexander L. Densmore

Following a large continental earthquake, information on the spatial distribution of triggered landslides is required as quickly as possible for use in emergency response coordination. Synthetic Aperture Radar (SAR) methods have the potential to overcome variability in weather conditions, which often causes delays of days or weeks when mapping landslides using optical satellite imagery. Here we test landslide classifiers based on SAR coherence, which is estimated from the similarity in phase change in time between small ensembles of pixels. We test two existing SAR-coherence-based landslide classifiers against an independent inventory of landslides triggered following the Mw 7.8 Gorkha, Nepal earthquake, and present and test a new method, which uses a classifier based on coherence calculated from ensembles of neighbouring pixels and coherence calculated from a more dispersed ensemble of ‘sibling’ pixels. Using Receiver Operating Characteristic analysis, we show that none of these three SAR-coherence-based landslide classification methods are suitable for mapping individual landslides on a pixel-by-pixel basis. However, they show potential in generating lower-resolution density maps, which are used by emergency responders following an earthquake to coordinate large-scale operations and identify priority areas. The new method we present outperforms existing methods when tested at these lower resolutions, suggesting that it may be able to provide useful and rapid information on landslide distributions following major continental earthquakes.


Author(s):  
C. C. Clawson ◽  
L. W. Anderson ◽  
R. A. Good

Investigations which require electron microscope examination of a few specific areas of non-homogeneous tissues make random sampling of small blocks an inefficient and unrewarding procedure. Therefore, several investigators have devised methods which allow obtaining sample blocks for electron microscopy from region of tissue previously identified by light microscopy of present here techniques which make possible: 1) sampling tissue for electron microscopy from selected areas previously identified by light microscopy of relatively large pieces of tissue; 2) dehydration and embedding large numbers of individually identified blocks while keeping each one separate; 3) a new method of maintaining specific orientation of blocks during embedding; 4) special light microscopic staining or fluorescent procedures and electron microscopy on immediately adjacent small areas of tissue.


1960 ◽  
Vol 23 ◽  
pp. 227-232 ◽  
Author(s):  
P WEST ◽  
G LYLES
Keyword(s):  

2007 ◽  
Vol 177 (4S) ◽  
pp. 612-612
Author(s):  
Motoo Araki ◽  
Po N. Lam ◽  
Daniel J. Culkin ◽  
Pamela E. Fox ◽  
Glenn M. Sulley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document