A Visual Tracking Algorithm Based on Visual Saliency and Multiple Features Fusion

Author(s):  
Xiaoxuan Chen ◽  
Xiao Hu ◽  
Jieqi Zhu ◽  
Zhao Yang ◽  
Li Wang ◽  
...  
2018 ◽  
Vol 26 (4) ◽  
pp. 989-997
Author(s):  
陈典兵 CHEN Dian-bing ◽  
朱明 ZHU Ming ◽  
王慧利 WANG Hui-li ◽  
杨航 YANG Hang

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Heng Fan ◽  
Jinhai Xiang ◽  
Jun Xu ◽  
Honghong Liao

We propose a novel part-based tracking algorithm using online weighted P-N learning. An online weighted P-N learning method is implemented via considering the weight of samples during classification, which improves the performance of classifier. We apply weighted P-N learning to track a part-based target model instead of whole target. In doing so, object is segmented into fragments and parts of them are selected as local feature blocks (LFBs). Then, the weighted P-N learning is employed to train classifier for each local feature block (LFB). Each LFB is tracked through the corresponding classifier, respectively. According to the tracking results of LFBs, object can be then located. During tracking process, to solve the issues of occlusion or pose change, we use a substitute strategy to dynamically update the set of LFB, which makes our tracker robust. Experimental results demonstrate that the proposed method outperforms the state-of-the-art trackers.


Sign in / Sign up

Export Citation Format

Share Document