A Survey On Graph Matching In Computer Vision

Author(s):  
Hui Sun ◽  
Wenju Zhou ◽  
Minrui Fei
2013 ◽  
pp. 381-421 ◽  
Author(s):  
Mario Vento ◽  
Pasquale Foggia

Many computer vision applications require a comparison between two objects, or between an object and a reference model. When the objects or the scenes are represented by graphs, this comparison can be performed using some form of graph matching. The aim of this chapter is to introduce the main graph matching techniques that have been used for computer vision, and to relate each application with the techniques that are most suited to it.


Author(s):  
Mario Vento ◽  
Pasquale Foggia

Many computer vision applications require a comparison between two objects, or between an object and a reference model. When the objects or the scenes are represented by graphs, this comparison can be performed using some form of graph matching. The aim of this chapter is to introduce the main graph matching techniques that have been used for computer vision, and to relate each application with the techniques that are most suited to it.


Author(s):  
Shiyu Chen ◽  
Xiuxiao Yuan ◽  
Wei Yuan ◽  
Yang Cai

Image matching lies at the heart of photogrammetry and computer vision. For poor textural images, the matching result is affected by low contrast, repetitive patterns, discontinuity or occlusion, few or homogeneous textures. Recently, graph matching became popular for its integration of geometric and radiometric information. Focused on poor textural image matching problem, it is proposed an edge-weight strategy to improve graph matching algorithm. A series of experiments have been conducted including 4 typical landscapes: Forest, desert, farmland, and urban areas. And it is experimentally found that our new algorithm achieves better performance. Compared to SIFT, doubled corresponding points were acquired, and the overall recall rate reached up to 68%, which verifies the feasibility and effectiveness of the algorithm.


2009 ◽  
Vol 33 (5) ◽  
pp. 333-342 ◽  
Author(s):  
Ananda S. Chowdhury ◽  
Suchendra M. Bhandarkar ◽  
Robert W. Robinson ◽  
Jack C. Yu

Author(s):  
Shiyu Chen ◽  
Xiuxiao Yuan ◽  
Wei Yuan ◽  
Yang Cai

Image matching lies at the heart of photogrammetry and computer vision. For poor textural images, the matching result is affected by low contrast, repetitive patterns, discontinuity or occlusion, few or homogeneous textures. Recently, graph matching became popular for its integration of geometric and radiometric information. Focused on poor textural image matching problem, it is proposed an edge-weight strategy to improve graph matching algorithm. A series of experiments have been conducted including 4 typical landscapes: Forest, desert, farmland, and urban areas. And it is experimentally found that our new algorithm achieves better performance. Compared to SIFT, doubled corresponding points were acquired, and the overall recall rate reached up to 68%, which verifies the feasibility and effectiveness of the algorithm.


1985 ◽  
Vol 30 (1) ◽  
pp. 47-47
Author(s):  
Herman Bouma
Keyword(s):  

1983 ◽  
Vol 2 (5) ◽  
pp. 130
Author(s):  
J.A. Losty ◽  
P.R. Watkins

Metrologiya ◽  
2020 ◽  
pp. 15-37
Author(s):  
L. P. Bass ◽  
Yu. A. Plastinin ◽  
I. Yu. Skryabysheva

Use of the technical (computer) vision systems for Earth remote sensing is considered. An overview of software and hardware used in computer vision systems for processing satellite images is submitted. Algorithmic methods of the data processing with use of the trained neural network are described. Examples of the algorithmic processing of satellite images by means of artificial convolution neural networks are given. Ways of accuracy increase of satellite images recognition are defined. Practical applications of convolution neural networks onboard microsatellites for Earth remote sensing are presented.


Sign in / Sign up

Export Citation Format

Share Document