Fusion of Selected Deep CNN and Handcrafted Features for Gastritis Detection from Wireless Capsule Endoscopy Images

Author(s):  
Bailiang Zhao ◽  
Wendell Q. Sun ◽  
Liangchao Wang ◽  
Menghan Hu
2021 ◽  
Vol 137 ◽  
pp. 104789
Author(s):  
Samir Jain ◽  
Ayan Seal ◽  
Aparajita Ojha ◽  
Anis Yazidi ◽  
Jan Bures ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Sen Wang ◽  
Yuxiang Xing ◽  
Li Zhang ◽  
Hewei Gao ◽  
Hao Zhang

Wireless capsule endoscopy (WCE) has developed rapidly over the last several years and now enables physicians to examine the gastrointestinal tract without surgical operation. However, a large number of images must be analyzed to obtain a diagnosis. Deep convolutional neural networks (CNNs) have demonstrated impressive performance in different computer vision tasks. Thus, in this work, we aim to explore the feasibility of deep learning for ulcer recognition and optimize a CNN-based ulcer recognition architecture for WCE images. By analyzing the ulcer recognition task and characteristics of classic deep learning networks, we propose a HAnet architecture that uses ResNet-34 as the base network and fuses hyper features from the shallow layer with deep features in deeper layers to provide final diagnostic decisions. 1,416 independent WCE videos are collected for this study. The overall test accuracy of our HAnet is 92.05%, and its sensitivity and specificity are 91.64% and 92.42%, respectively. According to our comparisons of F1, F2, and ROC-AUC, the proposed method performs better than several off-the-shelf CNN models, including VGG, DenseNet, and Inception-ResNet-v2, and classical machine learning methods with handcrafted features for WCE image classification. Overall, this study demonstrates that recognizing ulcers in WCE images via the deep CNN method is feasible and could help reduce the tedious image reading work of physicians. Moreover, our HAnet architecture tailored for this problem gives a fine choice for the design of network structure.


Endoscopy ◽  
2006 ◽  
Vol 38 (11) ◽  
Author(s):  
P McConville ◽  
WJ Cash ◽  
RGP Watson ◽  
JS Collins

2017 ◽  
Vol 26 (2) ◽  
pp. 151-156
Author(s):  
Manuele Furnari ◽  
Andrea Buda ◽  
Gabriele Delconte ◽  
Davide Citterio ◽  
Theodor Voiosu ◽  
...  

Background & Aims: Neuroendocrine tumors (NETs) are a heterogeneous group of neoplasms with unclear etiology that may show functioning or non-functioning features. Primary tumor localization often requires integrated imaging. The European Neuroendocrine Tumors Society (ENETS) guidelines proposed wireless-capsule endoscopy (WCE) as a possible diagnostic tool for NETs, if intestinal origin is suspected. However, its impact on therapeutic management is debated. We aimed to evaluate the yield of WCE in detecting intestinal primary tumor in patients showing liver NET metastases when first-line investigations are inconclusive.Method: Twenty-four patients with histological diagnosis of metastatic NET from liver biopsy and no evidence of primary lesions at first-line investigations were prospectively studied in an ENETS-certified tertiary care center. Wireless-capsule endoscopy was requested before explorative laparotomy and intra-operative ultrasound. The diagnostic yield of WCE was compared to the surgical exploration.Results: Sixteen subjects underwent surgery; 11/16 had positive WCE identifying 16 bulging lesions. Mini-laparotomy found 13 NETs in 11/16 patients (9 small bowel, 3 pancreas, 1 bile ducts). Agreement between WCE and laparotomy was recorded in 9 patients (Sensitivity=75%; Specificity=37.5%; PPV=55%; NPV=60%). Correspondence assessed per-lesions produced similar results (Sensitivity=70%; Specificity=25%; PPV=44%; NPV=50%). No capsule retentions were recorded.Conclusions: Wireless-capsule endoscopy is not indicated as second-line investigation for patients with gastro-entero-pancreatic NETs. In the setting of a referral center, it might provide additional information when conventional investigations are inconclusive about the primary site.Abbreviations: DBE: double balloon enteroscopy; GEP-NET: gastro-entero-pancreatic neuroendocrine tumor; GI: gastrointestinal; ENETS: European Neuroendocrine Tumor Society; NET: neuroendocrine tumor; SSRS: somatostatin receptor scintigraphy; WCE: wireless capsule endoscopy.


Sign in / Sign up

Export Citation Format

Share Document