Infrared small target detection based on complex contourlet transform and principal component analysis

Author(s):  
Shouxin Ji ◽  
Yiquan Wu ◽  
Yiquan Wu
Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 755
Author(s):  
He Wang ◽  
Yunhong Xin

Wavelet-based Contourlet transform (WBCT) is a typical Multi-scale Geometric Analysis (MGA) method, it is a powerful technique to suppress background and enhance the edge of target. However, in the small target detection with the complex background, WBCT always lead to a high false alarm rate. In this paper, we present an efficient and robust method which utilizes WBCT method in conjunction with kurtosis model for the infrared small target detection in complex background. We mainly made two contributions. The first, WBCT method is introduced as a preprocessing step, and meanwhile we present an adaptive threshold selection strategy for the selection of WBCT coefficients of different scales and different directions, as a result, the most background clutters are suppressed in this stage. The second, a kurtosis saliency map is obtained by using a local kurtosis operator. In the kurtosis saliency map, a slide window and its corresponding mean and variance is defined to locate the area where target exists, and subsequently an adaptive threshold segment mechanism is utilized to pick out the small target from the selected area. Extensive experimental results demonstrate that, compared with the contrast methods, the proposed method can achieve satisfactory performance, and it is superior in detection rate, false alarm rate and ROC curve especially in complex background.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1426
Author(s):  
Jiaqi Yang ◽  
Yi Cui ◽  
Fei Song ◽  
Tao Lei

Infrared small target detection technology has sufficient applications in many engineering fields, such as infrared early warning, infrared tracking, and infrared reconnaissance. Due to the tiny size of the infrared small target and the lack of shape and texture information, existing methods often leave residuals or miss the target. To address these issues, a novel method based on a non-overlapping patch (NOP) joint l0-l1 norm is proposed with the introduction of sparsity regularized principal component pursuit (SRPCP). The NOP model makes the patch lighter in the first place, reducing time consumption. The adoption of the l0 norm enhances the sparsity of the target, while the adoption of the l1 norm enhances the robustness of the algorithm under clutter. As a smart optimization method, SRPCP solves the NOP model fittingly and achieves stable separation of low-rank and sparse components, thereby improving detection capacity while suppressing the background efficiently. The proposed method ultimately yielded favorable detection results. Adequate experiment results demonstrate that the proposed method is competitive in terms of background suppression and true target detection with respect to state-of-the-art methods. In addition, our method also reduces the computational time.


Author(s):  
Qiwei Chen ◽  
Cheng Wu ◽  
Yiming Wang

A method based on Robust Principle Component Analysis (RPCA) technique is proposed to detect small targets in infrared images. Using the low rank characteristic of background and the sparse characteristic of target, the observed image is regarded as the sum of a low-rank background matrix and a sparse outlier matrix, and then the decomposition is solved by the RPCA. The infrared small target is extracted from the single-frame image or multi-frame sequence. In order to get more efficient algorithm, the iteration process in the augmented Lagrange multiplier method is improved. The simulation results show that the method can detect out the small target precisely and efficiently.


Sign in / Sign up

Export Citation Format

Share Document