complex background
Recently Published Documents


TOTAL DOCUMENTS

564
(FIVE YEARS 143)

H-INDEX

24
(FIVE YEARS 5)

Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 319
Author(s):  
Xin Chen ◽  
Jinghong Liu ◽  
Fang Xu ◽  
Zhihua Xie ◽  
Yujia Zuo ◽  
...  

Aircraft detection in remote sensing images (RSIs) has drawn widespread attention in recent years, which has been widely used in the military and civilian fields. While the complex background, variations of aircraft pose and size bring great difficulties to the effective detection. In this paper, we propose a novel aircraft target detection scheme based on small training samples. The scheme is coarse-to-fine, which consists of two main stages: region proposal and target identification. First, in the region proposal stage, a circular intensity filter, which is designed based on the characteristics of the aircraft target, can quickly locate the centers of multi-scale suspicious aircraft targets in the RSIs pyramid. Then the target regions can be extracted by adding bounding boxes. This step can get high-quality but few candidate regions. Second, in the stage of target identification, we proposed a novel rotation-invariant feature, which combines rotation-invariant histogram of oriented gradient and vector of locally aggregated descriptors (VLAD). The feature can characterize the aircraft target well by avoiding the impact of its rotation and can be effectively used to remove false alarms. Experiments are conducted on Remote Sensing Object Detection (RSOD) dataset to compare the proposed method with other advanced methods. The results show that the proposed method can quickly and accurately detect aircraft targets in RSIs and achieve a better performance.


Photonics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 13
Author(s):  
Kaili Lu ◽  
Enhai Liu ◽  
Rujin Zhao ◽  
Hui Zhang ◽  
Ling Lin ◽  
...  

Stray light, such as sunlight, moonlight, and earth-atmosphere light, can bring about light spots in backgrounds, and it affects the star detection of star sensors. To overcome this problem, this paper proposes a star detection algorithm (CMLCM) with multidirectional local contrast based on curvature. It regards the star image as a spatial surface and analyzes the difference in the curvature between the star and the background. It uses a facet model to represent the curvature and calculate the second-order derivatives in four directions. According to the characteristic of the star and the complex background, it enhances the target and suppresses the complex background by a new calculation method of a local contrast map. Finally, it divides the local contrast map into multiple 256 × 256 sub-regions for a more effective threshold segmentation. The experimental results indicated that the CMLCM algorithm could effectively detect a large number of accurate stars under stray light interference, and the detection rate was higher than other compared algorithms with a lower false alarm rate.


2021 ◽  
Vol 13 (24) ◽  
pp. 5104
Author(s):  
Songlin Lei ◽  
Dongdong Lu ◽  
Xiaolan Qiu ◽  
Chibiao Ding

Deep learning has been widely used in the field of SAR ship detection. However, current SAR ship detection still faces many challenges, such as complex scenes, multiple scales, and small targets. In order to promote the solution to the above problems, this article releases a high-resolution SAR ship detection dataset which can be used for rotating frame target detection. The dataset contains six categories of ships. In total, 30 panoramic SAR tiles of the Chinese Gaofen-3 of port areas with a 1-m resolution were cropped to slices, each with 1024 × 1024 pixels. In addition, most of the images in the dataset contain nearshore areas with complex background interference. Eight state-of-the-art rotated detectors and a CFAR-based method were used to evaluate the dataset. Experimental results revealed that the complex background will have a great impact on the performance of detectors.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2325
Author(s):  
Xinyu Hu ◽  
Qi Chen ◽  
Xuhui Ye ◽  
Daode Zhang ◽  
Yuxuan Tang ◽  
...  

Silkworm microparticle disease is a legal quarantine standard in the detection of silkworm disease all over the world. The current common detection method, the Pasteur manual microscopy method, has a low detection efficiency all over the world. The low efficiency of the current Pasteur manual microscopy detection method makes the application of machine vision technology to detect microparticle spores an important technology to advance silkworm disease research. For the problems of the low contrast, different illumination conditions and complex image background of microscopic images of the ellipsoidal symmetrical shape of silkworm microparticle spores collected in the detection solution, a region growth segmentation method based on microparticle color and grayscale information is proposed. In this method, the fuzzy contrast enhancement algorithm is used to enhance the color information of micro-particles and improve the discrimination between the micro-particles and background. In the HSV color space with stable color, the color information of micro-particles is extracted as seed points to eliminate the influence of light and reduce the interference of impurities to locate the distribution area of micro-particles accurately. Combined with the neighborhood gamma transformation, the highlight feature of the micro-particle target in the grayscale image is enhanced for region growing. Mea6nwhile, the accurate and complete micro-particle target is segmented from the complex background, which reduces the background impurity segmentation caused by a single feature in the complex background. In order to evaluate the segmentation performance, we calculate the IOU of the microparticle sample image segmented by this method with its corresponding true value image, and the experiments show that the combination of color and grayscale features using the region growth technique can accurately and completely segment the microparticle target in complex backgrounds with a segmentation accuracy IOU as high as 83.1%.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Srinivas Talasila ◽  
Kirti Rawal ◽  
Gaurav Sethi

PurposeExtraction of leaf region from the plant leaf images is a prerequisite process for species recognition, disease detection and classification and so on, which are required for crop management. Several approaches were developed to implement the process of leaf region segmentation from the background. However, most of the methods were applied to the images taken under laboratory setups or plain background, but the application of leaf segmentation methods is vital to be used on real-time cultivation field images that contain complex backgrounds. So far, the efficient method that automatically segments leaf region from the complex background exclusively for black gram plant leaf images has not been developed.Design/methodology/approachExtracting leaf regions from the complex background is cumbersome, and the proposed PLRSNet (Plant Leaf Region Segmentation Net) is one of the solutions to this problem. In this paper, a customized deep network is designed and applied to extract leaf regions from the images taken from cultivation fields.FindingsThe proposed PLRSNet compared with the state-of-the-art methods and the experimental results evident that proposed PLRSNet yields 96.9% of Similarity Index/Dice, 94.2% of Jaccard/IoU, 98.55% of Correct Detection Ratio, Total Segmentation Error of 0.059 and Average Surface Distance of 3.037, representing a significant improvement over existing methods particularly taking into account of cultivation field images.Originality/valueIn this work, a customized deep learning network is designed for segmenting plant leaf region under complex background and named it as a PLRSNet.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shuangjiang Du ◽  
Baofu Zhang ◽  
Pin Zhang ◽  
Peng Xiang ◽  
Hong Xue

Infrared target detection is a popular applied field in object detection as well as a challenge. This paper proposes the focus and attention mechanism-based YOLO (FA-YOLO), which is an improved method to detect the infrared occluded vehicles in the complex background of remote sensing images. Firstly, we use GAN to create infrared images from the visible datasets to make sufficient datasets for training as well as using transfer learning. Then, to mitigate the impact of the useless and complex background information, we propose the negative sample focusing mechanism to focus on the confusing negative sample training to depress the false positives and increase the detection precision. Finally, to enhance the features of the infrared small targets, we add the dilated convolutional block attention module (dilated CBAM) to the CSPdarknet53 in the YOLOv4 backbone. To verify the superiority of our model, we carefully select 318 infrared occluded vehicle images from the VIVID-infrared dataset for testing. The detection accuracy-mAP improves from 79.24% to 92.95%, and the F1 score improves from 77.92% to 88.13%, which demonstrates a significant improvement in infrared small occluded vehicle detection.


Sign in / Sign up

Export Citation Format

Share Document