EEG-based Emotion Recognition Under Convolutional Neural Network with Differential Entropy Feature Maps

Author(s):  
Yifan Li ◽  
Chi Man Wong ◽  
Yudian Zheng ◽  
Feng Wan ◽  
Peng Un Mak ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zelin Deng ◽  
Qiran Zhu ◽  
Pei He ◽  
Dengyong Zhang ◽  
Yuansheng Luo

Using the convolutional neural network (CNN) method for image emotion recognition is a research hotspot of deep learning. Previous studies tend to use visual features obtained from a global perspective and ignore the role of local visual features in emotional arousal. Moreover, the CNN shallow feature maps contain image content information; such maps obtained from shallow layers directly to describe low-level visual features may lead to redundancy. In order to enhance image emotion recognition performance, an improved CNN is proposed in this work. Firstly, the saliency detection algorithm is used to locate the emotional region of the image, which is served as the supplementary information to conduct emotion recognition better. Secondly, the Gram matrix transform is performed on the CNN shallow feature maps to decrease the redundancy of image content information. Finally, a new loss function is designed by using hard labels and probability labels of image emotion category to reduce the influence of image emotion subjectivity. Extensive experiments have been conducted on benchmark datasets, including FI (Flickr and Instagram), IAPSsubset, ArtPhoto, and Abstract. The experimental results show that compared with the existing approaches, our method has a good application prospect.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Bambang Tutuko ◽  
Siti Nurmaini ◽  
Alexander Edo Tondas ◽  
Muhammad Naufal Rachmatullah ◽  
Annisa Darmawahyuni ◽  
...  

Abstract Background Generalization model capacity of deep learning (DL) approach for atrial fibrillation (AF) detection remains lacking. It can be seen from previous researches, the DL model formation used only a single frequency sampling of the specific device. Besides, each electrocardiogram (ECG) acquisition dataset produces a different length and sampling frequency to ensure sufficient precision of the R–R intervals to determine the heart rate variability (HRV). An accurate HRV is the gold standard for predicting the AF condition; therefore, a current challenge is to determine whether a DL approach can be used to analyze raw ECG data in a broad range of devices. This paper demonstrates powerful results for end-to-end implementation of AF detection based on a convolutional neural network (AFibNet). The method used a single learning system without considering the variety of signal lengths and frequency samplings. For implementation, the AFibNet is processed with a computational cloud-based DL approach. This study utilized a one-dimension convolutional neural networks (1D-CNNs) model for 11,842 subjects. It was trained and validated with 8232 records based on three datasets and tested with 3610 records based on eight datasets. The predicted results, when compared with the diagnosis results indicated by human practitioners, showed a 99.80% accuracy, sensitivity, and specificity. Result Meanwhile, when tested using unseen data, the AF detection reaches 98.94% accuracy, 98.97% sensitivity, and 98.97% specificity at a sample period of 0.02 seconds using the DL Cloud System. To improve the confidence of the AFibNet model, it also validated with 18 arrhythmias condition defined as Non-AF-class. Thus, the data is increased from 11,842 to 26,349 instances for three-class, i.e., Normal sinus (N), AF and Non-AF. The result found 96.36% accuracy, 93.65% sensitivity, and 96.92% specificity. Conclusion These findings demonstrate that the proposed approach can use unknown data to derive feature maps and reliably detect the AF periods. We have found that our cloud-DL system is suitable for practical deployment


Author(s):  
Tengfei Song ◽  
Wenming Zheng ◽  
Suyuan Liu ◽  
Yuan Zong ◽  
Zhen Cui ◽  
...  

Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 949
Author(s):  
Jiangyi Wang ◽  
Min Liu ◽  
Xinwu Zeng ◽  
Xiaoqiang Hua

Convolutional neural networks have powerful performances in many visual tasks because of their hierarchical structures and powerful feature extraction capabilities. SPD (symmetric positive definition) matrix is paid attention to in visual classification, because it has excellent ability to learn proper statistical representation and distinguish samples with different information. In this paper, a deep neural network signal detection method based on spectral convolution features is proposed. In this method, local features extracted from convolutional neural network are used to construct the SPD matrix, and a deep learning algorithm for the SPD matrix is used to detect target signals. Feature maps extracted by two kinds of convolutional neural network models are applied in this study. Based on this method, signal detection has become a binary classification problem of signals in samples. In order to prove the availability and superiority of this method, simulated and semi-physical simulated data sets are used. The results show that, under low SCR (signal-to-clutter ratio), compared with the spectral signal detection method based on the deep neural network, this method can obtain a gain of 0.5–2 dB on simulated data sets and semi-physical simulated data sets.


Sign in / Sign up

Export Citation Format

Share Document