Compensation and Emulation of Output Impedance in Ultra-High Bandwidth Class-D Power Amplifiers

Author(s):  
Florian Krismer ◽  
Johann W. Kolar
2014 ◽  
Vol 45 (8) ◽  
pp. 1132-1142 ◽  
Author(s):  
Nikhil Raj ◽  
Ashutosh Kumar Singh ◽  
Anil Kumar Gupta

2021 ◽  
Vol 12 (1) ◽  
pp. 135-146
Author(s):  
Tobias Menden ◽  
Jascha Matuszczyk ◽  
Steffen Leonhardt ◽  
Marian Walter

Abstract Bioimpedance measurements use current or voltage sources to inject an excitation signal into the body. These sources require a high bandwidth, typically from 1 kHz to 1 MHz. Besides a low common mode, current limitation is necessary for patient safety. In this paper, we compare a symmetric enhanced Howland current source (EHCS) and a symmetric voltage source (VS) based on a non-inverting amplifier between 1 kHz and 1 MHz. A common mode reduction circuit has been implemented in both sources. The bandwidth of each source was optimized in simulations and achieved a stable output impedance over the whole frequency range. In laboratory measurements, the output impedance of the EHCS had its -3 dB point at 400 kHz. In contrast, the VS reached the +3 dB point at 600 kHz. On average over the observed frequency range, the active common mode compensation achieved a common mode rejection of -57.7 dB and -71.8 dB for the EHCS and VS, respectively. Our modifications to classical EHCS and VS circuits achieved a low common mode signal between 1 kHz and 1 MHz without the addition of complex circuitry, like general impedance converters. As a conclusion we found VSs to be superior to EHCSs for bioimpedance spectroscopy due to the higher bandwidth performance. However, this only applies if the injected current of the VS can be measured.


2012 ◽  
Vol 60 (6) ◽  
pp. 1907-1915 ◽  
Author(s):  
Per N. Landin ◽  
Jonas Fritzin ◽  
Wendy Van Moer ◽  
Magnus Isaksson ◽  
Atila Alvandpour

2001 ◽  
Vol 49 (12) ◽  
pp. 2480-2485 ◽  
Author(s):  
H. Kobayashi ◽  
J.M. Hinrichs ◽  
P.M. Asbeck

Sign in / Sign up

Export Citation Format

Share Document