A novel software defect prediction method based on hierarchical neural network

Author(s):  
Huiqun Yu ◽  
Xingjie Sun ◽  
Ziyi Zhou ◽  
Guisheng Fan
Author(s):  
Yan Wang ◽  

In order to solve the problem of low efficiency in software operation, we need to research the defect prediction of monitoring configuration software. The current method has the low efficiency in the defect prediction of software. Therefore, this paper proposed the software defect prediction method based on genetic optimization support vector machines. This method carried out feature selection for the measure of complexity of software, and built software defect prediction model of genetic optimized support vector machine, and completed the research on the efficient prediction method of software defects. Experimental results show that the proposed method improves the quality of software effectively.


Author(s):  
Hongyan Wan ◽  
Guoqing Wu ◽  
Mali Yu ◽  
Mengting Yuan

Software defect prediction technology has been widely used in improving the quality of software system. Most real software defect datasets tend to have fewer defective modules than defective-free modules. Highly class-imbalanced data typically make accurate predictions difficult. The imbalanced nature of software defect datasets makes the prediction model classifying a defective module as a defective-free one easily. As there exists the similarity during the different software modules, one module can be represented by the sparse representation coefficients over the pre-defined dictionary which consists of historical software defect datasets. In this study, we make use of dictionary learning method to predict software defect. We optimize the classifier parameters and the dictionary atoms iteratively, to ensure that the extracted features (sparse representation) are optimal for the trained classifier. We prove the optimal condition of the elastic net which is used to solve the sparse coding coefficients and the regularity of the elastic net solution. Due to the reason that the misclassification of defective modules generally incurs much higher cost risk than the misclassification of defective-free ones, we take the different misclassification costs into account, increasing the punishment on misclassification defective modules in the procedure of dictionary learning, making the classification inclining to classify a module as a defective one. Thus, we propose a cost-sensitive software defect prediction method using dictionary learning (CSDL). Experimental results on the 10 class-imbalance datasets of NASA show that our method is more effective than several typical state-of-the-art defect prediction methods.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1722
Author(s):  
Ruba Abu Khurma ◽  
Hamad Alsawalqah ◽  
Ibrahim Aljarah ◽  
Mohamed Abd Elaziz ◽  
Robertas Damaševičius

Software defect prediction (SDP) is crucial in the early stages of defect-free software development before testing operations take place. Effective SDP can help test managers locate defects and defect-prone software modules. This facilitates the allocation of limited software quality assurance resources optimally and economically. Feature selection (FS) is a complicated problem with a polynomial time complexity. For a dataset with N features, the complete search space has 2N feature subsets, which means that the algorithm needs an exponential running time to traverse all these feature subsets. Swarm intelligence algorithms have shown impressive performance in mitigating the FS problem and reducing the running time. The moth flame optimization (MFO) algorithm is a well-known swarm intelligence algorithm that has been used widely and proven its capability in solving various optimization problems. An efficient binary variant of MFO (BMFO) is proposed in this paper by using the island BMFO (IsBMFO) model. IsBMFO divides the solutions in the population into a set of sub-populations named islands. Each island is treated independently using a variant of BMFO. To increase the diversification capability of the algorithm, a migration step is performed after a specific number of iterations to exchange the solutions between islands. Twenty-one public software datasets are used for evaluating the proposed method. The results of the experiments show that FS using IsBMFO improves the classification results. IsBMFO followed by support vector machine (SVM) classification is the best model for the SDP problem over other compared models, with an average G-mean of 78%.


Sign in / Sign up

Export Citation Format

Share Document