Efficient Prediction Method of Defect of Monitor Configuration Software

Author(s):  
Yan Wang ◽  

In order to solve the problem of low efficiency in software operation, we need to research the defect prediction of monitoring configuration software. The current method has the low efficiency in the defect prediction of software. Therefore, this paper proposed the software defect prediction method based on genetic optimization support vector machines. This method carried out feature selection for the measure of complexity of software, and built software defect prediction model of genetic optimized support vector machine, and completed the research on the efficient prediction method of software defects. Experimental results show that the proposed method improves the quality of software effectively.

Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1722
Author(s):  
Ruba Abu Khurma ◽  
Hamad Alsawalqah ◽  
Ibrahim Aljarah ◽  
Mohamed Abd Elaziz ◽  
Robertas Damaševičius

Software defect prediction (SDP) is crucial in the early stages of defect-free software development before testing operations take place. Effective SDP can help test managers locate defects and defect-prone software modules. This facilitates the allocation of limited software quality assurance resources optimally and economically. Feature selection (FS) is a complicated problem with a polynomial time complexity. For a dataset with N features, the complete search space has 2N feature subsets, which means that the algorithm needs an exponential running time to traverse all these feature subsets. Swarm intelligence algorithms have shown impressive performance in mitigating the FS problem and reducing the running time. The moth flame optimization (MFO) algorithm is a well-known swarm intelligence algorithm that has been used widely and proven its capability in solving various optimization problems. An efficient binary variant of MFO (BMFO) is proposed in this paper by using the island BMFO (IsBMFO) model. IsBMFO divides the solutions in the population into a set of sub-populations named islands. Each island is treated independently using a variant of BMFO. To increase the diversification capability of the algorithm, a migration step is performed after a specific number of iterations to exchange the solutions between islands. Twenty-one public software datasets are used for evaluating the proposed method. The results of the experiments show that FS using IsBMFO improves the classification results. IsBMFO followed by support vector machine (SVM) classification is the best model for the SDP problem over other compared models, with an average G-mean of 78%.


2014 ◽  
Vol 23 (1) ◽  
pp. 75-82 ◽  
Author(s):  
Cagatay Catal

AbstractPredicting the defect-prone modules when the previous defect labels of modules are limited is a challenging problem encountered in the software industry. Supervised classification approaches cannot build high-performance prediction models with few defect data, leading to the need for new methods, techniques, and tools. One solution is to combine labeled data points with unlabeled data points during learning phase. Semi-supervised classification methods use not only labeled data points but also unlabeled ones to improve the generalization capability. In this study, we evaluated four semi-supervised classification methods for semi-supervised defect prediction. Low-density separation (LDS), support vector machine (SVM), expectation-maximization (EM-SEMI), and class mass normalization (CMN) methods have been investigated on NASA data sets, which are CM1, KC1, KC2, and PC1. Experimental results showed that SVM and LDS algorithms outperform CMN and EM-SEMI algorithms. In addition, LDS algorithm performs much better than SVM when the data set is large. In this study, the LDS-based prediction approach is suggested for software defect prediction when there are limited fault data.


Author(s):  
Liqiong Chen ◽  
Shilong Song ◽  
Can Wang

Just-in-time software defect prediction (JIT-SDP) is a fine-grained software defect prediction technology, which aims to identify the defective code changes in software systems. Effort-aware software defect prediction is a software defect prediction technology that takes into consideration the cost of code inspection, which can find more defective code changes in limited test resources. The traditional effort-aware defect prediction model mainly measures the effort based on the number of lines of code (LOC) and rarely considers additional factors. This paper proposes a novel effort measure method called Multi-Metric Joint Calculation (MMJC). When measuring the effort, MMJC takes into account not only LOC, but also the distribution of modified code across different files (Entropy), the number of developers that changed the files (NDEV) and the developer experience (EXP). In the simulation experiment, MMJC is combined with Linear Regression, Decision Tree, Random Forest, LightGBM, Support Vector Machine and Neural Network, respectively, to build the software defect prediction model. Several comparative experiments are conducted between the models based on MMJC and baseline models. The results show that indicators ACC and [Formula: see text] of the models based on MMJC are improved by 35.3% and 15.9% on average in the three verification scenarios, respectively, compared with the baseline models.


Sign in / Sign up

Export Citation Format

Share Document