A Novel Design of Reversible Toffoli Gate in Quantum-Dot Cellular Automata

Author(s):  
Mohsin Fayaz Shah ◽  
Mohammad Waqas ◽  
Vipan Kakkar
2021 ◽  
Author(s):  
Mukesh Patidar ◽  
Namit Gupta

Abstract Quantum-dot cellular automata (QCA) are a novel dominant transistor-less computational nanotechnology. It is an appropriate candidate for the upcoming generation of quantum computational nano-electronics technology. The main objective of this research work is to present a QCA reversible logic circuits design such as the Toffoli gate (TG) and Peres gate (PG) and do the analysis of different parameters. In this paper, we propose a single layer coplanar method to solve this physical layout design and synchronization problem. The presented reversible logic gate (RLG) layout designs are implemented by Bijection functional algorithm for reduction of the number of QCA (quantum) cells, latency, and minimum design area. Also, the Optimized energy dissipation and effect of temperature on output polarization cell, of the proposed structure have been checked successfully using the tool QD-E (Energy) tool. The proposed QCA design has been verified by QCADesigner-E 2.2 tool using a bistable approximation and coherence vector engine. Finally, comparisons have been proposed RLG-TG and RLG-PG designs with the existing QCA design.


Author(s):  
Esam AlKaldy ◽  
Ali H Majeed ◽  
Mohd Shamian Zainal ◽  
Danial MD Nor

<p>Quantum-dot Cellular Automata (QCA) is one of the most important computing technologies for the future and will be the alternative candidate for current CMOS technology. QCA is attracting a lot of researchers due to many features such as high speed, small size, and low power consumption. QCA has two main building blocks (majority gate and inverter) used for design any Boolean function. QCA also has an inherent capability that used to design many important gates such as XOR and Multiplexer in optimal form without following any Boolean function. This paper presents a novel design 2:1 QCA-Multiplexer in two forms. The proposed design is very simple, highly efficient and can be used to produce many logical functions. The proposed design output comes from the inherent capabilities of quantum technology. New 4:1 QCA-Multiplexer has been built using the proposed structure. The output waveforms showed the wonderful performance of the proposed design in terms of the number of cells, area, and latency.</p>


Sign in / Sign up

Export Citation Format

Share Document