METAMORPHOS: MEthods and Tools for migrAting software systeMs towards web and service Oriented aRchitectures: exPerimental evaluation, usability, and tecHnOlogy tranSfer

Author(s):  
Andrea De Lucia ◽  
Massimiliano Di Penta ◽  
Filippo Lanubile ◽  
Marco Torchiano
Author(s):  
Serkan Ayvaz ◽  
Yucel Batu Salman

Traditional monolithic systems are composed of software components that are tightly coupled and composed into one unit. Monolithic systems have scalability issues as all components of the entire system need to be compiled and deployed even for simple modifications. In this chapter, the evolution of the software systems used in big data from monolithic systems to service-oriented architectures was explored. More specifically, the challenges and strengths of implementing service-oriented architectures of microservices and serverless computing were investigated in detail. Moreover, the advantages of migrating to service-oriented architectures and the patterns of migration were discussed.


Author(s):  
Manel Fredj ◽  
Apostolos Zarras ◽  
Nikolaos Georgantas ◽  
Valérie Issarny

Service-oriented architectures evolved rapidly as the solution to the latest requirements for loosely-coupled distributed computing. Into this broad context several approaches emerged towards the discovery and the systematic composition/orchestration of services. One of the next challenges in this field is the maintenance of service-oriented architectures towards accomplishing the ultimate goal of constructing eternal service-oriented systems out of loosely-coupled basic engineering elements. The particular problem we deal with in this paper is the dynamic maintenance of service orchestrations in the presence of unavailable services. Specifically, we focus on the dynamic substitution of stateful services that become unavailable during the execution of service orchestrations. As an answer to this problem, we propose the SIROCO middleware platform based on ontology which is further detailed along with an experimental evaluation of our first prototype. Our findings show that SIROCO provides the necessary means for achieving dynamic maintenance with a reasonable expense on the execution of service orchestrations.


2021 ◽  
Vol 15 (2) ◽  
pp. 1-25
Author(s):  
Amal Alhosban ◽  
Zaki Malik ◽  
Khayyam Hashmi ◽  
Brahim Medjahed ◽  
Hassan Al-Ababneh

Service-Oriented Architectures (SOA) enable the automatic creation of business applications from independently developed and deployed Web services. As Web services are inherently a priori unknown, how to deliver reliable Web services compositions is a significant and challenging problem. Services involved in an SOA often do not operate under a single processing environment and need to communicate using different protocols over a network. Under such conditions, designing a fault management system that is both efficient and extensible is a challenging task. In this article, we propose SFSS, a self-healing framework for SOA fault management. SFSS is predicting, identifying, and solving faults in SOAs. In SFSS, we identified a set of high-level exception handling strategies based on the QoS performances of different component services and the preferences articled by the service consumers. Multiple recovery plans are generated and evaluated according to the performance of the selected component services, and then we execute the best recovery plan. We assess the overall user dependence (i.e., the service is independent of other services) using the generated plan and the available invocation information of the component services. Due to the experiment results, the given technique enhances the service selection quality by choosing the services that have the highest score and betters the overall system performance. The experiment results indicate the applicability of SFSS and show improved performance in comparison to similar approaches.


Author(s):  
JENS WEBER-JAHNKE

Computer-based clinical decision support (CDS) contributes to cost savings, increased patient safety and quality of medical care. Most existing CDS systems are stand-alone products (first generation) or part of complete electronic medical record packages (second generation). Experience shows that creating and maintaining CDS systems is expensive and requires effort that should be economized by sharing them among multiple users. It makes good economic sense to share CDS service installations among a larger set of client systems. The paradigm of a service-oriented architecture (SOA) embraces this idea of sharing distributed services. Some attempts making CDS services available to distributed health information systems exist. However, these approaches have not gained much adoption. We argue that they do not provide a sufficient level of decoupling between client and CDS in order to be broadly reusable in SOAs. In this paper, we present a new CDS service component called EGADSS, which has been designed and implemented with the declared objective to minimize the coupling between client and CDS server. We present our key design decisions, which are guided by empirical research in SOA development. We evaluate our result theoretically by measuring the level of decoupling achieved compared to existing CDS approaches. Furthermore, we report on an empirical evaluation of the resulting design, integrating the EGADSS service with an example client system.


Sign in / Sign up

Export Citation Format

Share Document