A Pin-Loaded and SIW-Fed Circular Patch Antenna with Stable High Gain and Wide Impedance Bandwidth

Author(s):  
Yu-Fan Yang ◽  
Xiao Zhang ◽  
Ting-Yan Tan ◽  
Lei Zhu ◽  
Tao Yuan
Author(s):  
Abdessalam El Yassini ◽  
Lahcen Aguni ◽  
Saida Ibnyaich ◽  
Samira Chabaa ◽  
Abdelouhab Zeroual

Author(s):  
Bismah Hasan ◽  
Kamran Raza

Slotted circular printed layered patch antenna is designed, simulated and fabricated for 5G (Fifth Generation) wireless communication applications. The antenna consists of slots in the main radiating circular patch element for miniaturizing the size of the radiating element and providing dual band radiation characteristics. The feed line is separated on bottom substrate layer with EBG (Electromagnetic Band-Gap) embedded for enhancing the gain characteristics of the antenna. Superstrate layer is also used for improving the gain of the antenna where the distance from the radiating antenna element is optimized for maximizing the impedance bandwidth and radiation characteristics. The feed realization and impedance matching of the radiating slotted circular patch antenna is done by inducing slot at the middle ground plane of the slot embedded circular patch antenna system. The proposed configuration provides power radiation gain values of more than 5 dB for the Ka band of communications, whereas the impedance bandwidth of the antenna is verified for the dual resonances at 27.5 and 28.5 GHz. Dual band radiation characteristics are attained by embedding and optimizing the slot length and width in the circular patch radiator element that is placed on the upper face of the substrate RT Rogers Duroid 5880 layer. The length of the microstrip feed line embedded in the lower layer of the substrate is optimized for providing required bandwidth characteristics for the dual frequency point radiations. The antenna configuration is designed, modeled and simulated in CST (Central Standard Time) Microwave studio. The antenna is fabricated and measured vs simulated frequency response, gain patterns and current density plots are presented for the verification of antenna operation in the desired frequency bands.


2013 ◽  
Vol 6 (5) ◽  
pp. 497-503 ◽  
Author(s):  
Kirti Vyas ◽  
Garima Sanyal ◽  
Arun Kumar Sharma ◽  
Pramod Kumar Singhal

The present paper reports the gain enhancement over a wideband (12–15 GHz) in a coplanar waveguide (CPW)-fed circular patch antenna with circular defected ground structure (DGS). Two compact coplanar circular antennas have been designed and fabricated with and without DGS of same volume 18 × 20 × 1.6 mm3, built over FR4-epoxy substrate (εr = 4.4). Gain enhancement has been achieved by optimizing the current distribution with suitable DGS. For this purpose, structural designs have been optimized by parametric simulations in HFSS and CST MWS. Both the antennas can perform well in variety of wireless communication including WLAN IEEE 802.11 g/a (5.15–5.35 GHz and 5.725–5.825 GHz) and X-band applications including short range, tracking, missile guidance, and radar communication that ranges roughly from 8.29 to 11.4 GHz. The measured experimental results show that impedance bandwidth (S11 < −10 dB) of antenna with DGS is 100%. The antenna with DGS offers gain improvement by 2.7 dB for 13 GHz and 7 dB for 14 GHz. The performance of antenna with DGS is compared to conventional CPW-fed circular patch antenna (without DGS) in terms of reflection coefficient, radiation characteristics, and gain.


2020 ◽  
Vol 68 (9) ◽  
pp. 6506-6515 ◽  
Author(s):  
Jun-Hui Ou ◽  
Jingwen Huang ◽  
Jian Liu ◽  
Jie Tang ◽  
Xiu Yin Zhang

Sign in / Sign up

Export Citation Format

Share Document