gain enhancement
Recently Published Documents


TOTAL DOCUMENTS

980
(FIVE YEARS 111)

H-INDEX

38
(FIVE YEARS 0)

2022 ◽  
Vol 155 ◽  
pp. 111741
Author(s):  
Yuhao Ren ◽  
Yan Pan ◽  
Fabing Duan


Author(s):  
Soumik Dey ◽  
Sukomal Dey

Abstract This paper presents a broadband miniaturized Fabry–Perot cavity resonator antenna (CRA) made of novel electromagnetic bandgap (EBG) superstrate as partially reflecting surface (PRS) and reactive impedance surface (RIS) backed rectangular patch antenna. To the best of the authors' knowledge, the proposed EBG exhibits the highest stopband bandwidth (BW) with a bandgap existing between 7.37 and 12.4 GHz (50.9%). Frequency-selective property of the EBG is utilized under plane wave incidence to demonstrate it as PRS superstrate in CRA antenna. The cavity is excited with a rectangular microstrip antenna which is made of two dielectric substrates with an additional RIS layer sandwiched between them. The RIS provides wideband impedance matching of the primary feed antenna. A 7 × 7 array of the EBG superstrate is loaded over the patch antenna having an overall lateral dimension of only 45 × 45 mm2 or 1.62 λ0 × 1.62 λ0 where λ0 is the free space wavelength at the center frequency of 10.8 GHz. The proposed Fabry–Perot CRA (FP-CRA) achieves gain enhancement of 6.59 dB as compared with the reference antenna and has a 10 dB return loss BW of 23.79% from 10.07 to 12.79 GHz. A prototype of the FP-CRA is fabricated and experimentally tested with single and dual layers of EBG superstrate. Measured results show BWs of 21.5 and 24.8% for the two cases with peak realized gain of 12.05 and 14.3 dBi, respectively. Later a four-element antenna array with corporate feeding is designed as the primary feed of the CRA. The simulation result shows a flat gain of >13 dBi with gain variation <1.2 dB over the impedance BW of 13.2%.





2021 ◽  
Vol 21 (2) ◽  
pp. 85
Author(s):  
Findi Nur Witriani ◽  
Yahya Syukri Amrullah ◽  
Fajri Darwis ◽  
Taufiqqurrachman Taufiqqurrachman ◽  
Yusuf Nur Wijayanto ◽  
...  

Microwave imaging, such as images for radiological inspection in the medical profession, is one of the applications utilized in ultra-wideband (UWB) frequency ranges. The Vivaldi antenna is one of the most popular antennas for this purpose. The antenna is utilized because of its simple, lightweight, and compact design, as well as its excellent efficiency and gain capabilities. In this work, we present a high-gain Vivaldi antenna for microwave imaging applications. The proposed Vivaldi antenna is designed using a double-slot structure method with the addition of corrugated edges and a semicircle director aimed at improving the gain. The antenna is designed to operate at frequencies ranging from 3.1 to 10.6 GHz. Based on the modeling findings, the suggested antenna attain a bandwidth of 7.5 GHz with operating frequencies from 3.1 GHz to 10.6 GHz for a VSWR of less than two. In comparison to a typical single slot antenna, the suggested antenna provides a substantial boost in gain performance. The increase in gain is proportional to the frequency of operation. The constructed antenna has a lower bandwidth than the simulated one, with operating frequencies of 3.5 GHz – 3.75 GHz and 4.25 – 10.89 GHz, respectively, and useable bandwidths of 250 MHz and 6.64 GHz. All these results suggest that the antenna is suitable for microwave imaging applications.



Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 125
Author(s):  
Shaza El-Nady ◽  
Rania R. Elsharkawy ◽  
Asmaa I. Afifi ◽  
Anwer S. Abd El-Hameed

This paper exhibits a high-gain, low-profile dipole antenna array (DAA) for 5G applications. The dipole element has a semi-triangular shape to realize a simple input impedance regime. To reduce the overall antenna size, a substrate integrated cavity (SIC) is adopted as a power splitter feeding network. The transition between the SIC and the antenna element is achieved by a grounded coplanar waveguide (GCPW) to increase the degree of freedom of impedance matching. Epsilon-near-zero (ENZ) metamaterial technique is exploited for gain enhancement. The ENZ metamaterial unit cells of meander shape are placed in front of each dipole perpendicularly to guide the radiated power into the broadside direction. The prospective antenna has an overall size of 2.58 λg3 and operates from 28.5 GHz up to 30.5 GHz. The gain is improved by 5 dB compared to that of the antenna without ENZ unit cells, reaching 11 dBi at the center frequency of 29.5 GHz. Measured and simulated results show a reasonable agreement.



2021 ◽  
Vol 15 ◽  
Author(s):  
Feifan Chen ◽  
Fei Zhao ◽  
Nadeem Mahafza ◽  
Wei Lu

Noise-induced cochlear synaptopathy (CS) is defined as a permanent loss of synapses in the auditory nerve pathway following noise exposure. Several studies using auditory brainstem response (ABR) have indicated the presence of CS and increased central gain in tinnitus patients with normal hearing thresholds (TNHT), but the results were inconsistent. This meta-analysis aimed to review the evidence of CS and its pathological changes in the central auditory system in TNHT. Published studies using ABR to study TNHT were reviewed. PubMed, EMBASE, and Scopus databases were selected to search for relevant literature. Studies (489) were retrieved, and 11 were included for meta-analysis. The results supported significantly reduced wave I amplitude in TNHT, whereas the alternations in wave V amplitude were inconsistent among the studies. Consistently increased V/I ratio indicated noise-induced central gain enhancement. The results indicated the evidence of noise-induced cochlear synaptopathy in tinnitus patients with normal hearing. However, inconsistent changes in wave V amplitude may be explained by that the failure of central gain that triggers the pathological neural changes in the central auditory system and/or that increased central gain may be necessary to generate tinnitus but not to maintain tinnitus.



Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3301
Author(s):  
Ahmed Jamal Abdullah Al-Gburi ◽  
Imran Mohd Ibrahim ◽  
Zahriladha Zakaria ◽  
Muhannad Kaml Abdulhameed ◽  
Tale Saeidi

This review paper combs through reports that have enhanced antenna gain for ultra-wideband (UWB) frequencies using frequency-selective surface (FSS) techniques. The FSS techniques found across the research landscape were mapped onto a taxonomy in order to determine the most effective method for improving antenna gain. Additionally, this study looked into the motivation behind using FSS as a reflector in UWB frequencies to obtain directional radiation. The FSS suits multiple applications due to its exceptional ability to minimize power loss in undesired transmission areas in the antenna, as well as to hinder the interference that may occur from undesirable and wasted radiation. An efficient way to obtain constant gain over a wide range of frequencies is also elaborated in this paper. Essentially, this paper offers viable prescription to enhance antenna gain for UWB applications. Methods: A comprehensive study was performed using several imminent keywords, such as “high gain using FSS”, “gain enhancement using FSS”, “high gain UWB antennas”, and “gain enhancement of UWB antennas”, in different modifications to retrieve all related articles from three primary engines: Web of Science (WoS), IEEE Xplore, and Science Direct. Results: The 41 papers identified after a comprehensive literature review were classified into two categories. The FSS single- and multi-layer reflectors were reported in 25 and 16 papers, respectively. New direction: An effective method is proposed for FSS miniaturization and for obtaining constant gain over UWB frequencies while maintaining the return loss at −10 dB. Conclusion: The use of FSS is indeed effective and viable for gain enhancement in UWB antennas. This systematic review unravels a vast range of opportunities for researchers to bridge the identified gaps.



2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
D.D. Devisasi Kala ◽  
D. Thiripura Sundari

PurposeOptimization involves changing the input parameters of a process that is experimented with different conditions to obtain the maximum or minimum result. Increasing interest is shown by antenna researchers in finding the optimum solution for designing complex antenna arrays which are possible by optimization techniques.Design/methodology/approachDesign of antenna array is a significant electro-magnetic problem of optimization in the current era. The philosophy of optimization is to find the best solution among several available alternatives. In an antenna array, energy is wasted due to side lobe levels which can be reduced by various optimization techniques. Currently, developing optimization techniques applicable for various types of antenna arrays is focused on by researchers.FindingsIn the paper, different optimization algorithms for reducing the side lobe level of the antenna array are presented. Specifically, genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO), cuckoo search algorithm (CSA), invasive weed optimization (IWO), whale optimization algorithm (WOA), fruitfly optimization algorithm (FOA), firefly algorithm (FA), cat swarm optimization (CSO), dragonfly algorithm (DA), enhanced firefly algorithm (EFA) and bat flower pollinator (BFP) are the most popular optimization techniques. Various metrics such as gain enhancement, reduction of side lobe, speed of convergence and the directivity of these algorithms are discussed. Faster convergence is provided by the GA which is used for genetic operator randomization. GA provides improved efficiency of computation with the extreme optimal result as well as outperforming other algorithms of optimization in finding the best solution.Originality/valueThe originality of the paper includes a study that reveals the usage of the different antennas and their importance in various applications.



Sign in / Sign up

Export Citation Format

Share Document