An Optimal Path Planning Algorithm for Cooperative USVs Situation Control

Author(s):  
Qiqiang Gao ◽  
Kai Zheng ◽  
Yi Jiang ◽  
Rencheng Zheng
Author(s):  
Amr Mohamed ◽  
Moustafa El-Gindy ◽  
Jing Ren ◽  
Haoxiang Lang

This paper presents an optimal collision-free path planning algorithm of an autonomous multi-wheeled combat vehicle using optimal control theory and artificial potential field function (APF). The optimal path of the autonomous vehicle between a given starting and goal points is generated by an optimal path planning algorithm. The cost function of the path planning is solved together with vehicle dynamics equations to satisfy the vehicle dynamics constraints and the boundary conditions. For this purpose, a simplified four-axle bicycle model of the actual vehicle considering the vehicle body lateral and yaw dynamics while neglecting roll dynamics is used. The obstacle avoidance technique is mathematically modeled based on the proposed sigmoid function as the artificial potential field method. This potential function is assigned to each obstacle as a repulsive potential field. The inclusion of these potential fields results in a new APF which controls the steering angle of the autonomous vehicle to reach the goal point. A full nonlinear multi-wheeled combat vehicle model in TruckSim software is used for validation. This is done by importing the generated optimal path data from the introduced optimal path planning MATLAB algorithm and comparing lateral acceleration, yaw rate and curvature at different speeds (9 km/h, 28 km/h) for both simplified and TruckSim vehicle model. The simulation results show that the obtained optimal path for the autonomous multi-wheeled combat vehicle satisfies all vehicle dynamics constraints and successfully validated with TruckSim vehicle model.


2019 ◽  
Vol 106 (2) ◽  
pp. 577-592 ◽  
Author(s):  
Patience I. Adamu ◽  
Hilary I. Okagbue ◽  
Pelumi E. Oguntunde

Author(s):  
Y. Shi ◽  
Y. Long ◽  
X. L. Wi

When tourists visiting multiple tourist scenic spots, the travel line is usually the most effective road network according to the actual tour process, and maybe the travel line is different from planned travel line. For in the field of navigation, a proposed travel line is normally generated automatically by path planning algorithm, considering the scenic spots' positions and road networks. But when a scenic spot have a certain area and have multiple entrances or exits, the traditional described mechanism of single point coordinates is difficult to reflect these own structural features. In order to solve this problem, this paper focuses on the influence on the process of path planning caused by scenic spots' own structural features such as multiple entrances or exits, and then proposes a doubleweighted Graph Model, for the weight of both vertexes and edges of proposed Model can be selected dynamically. And then discusses the model building method, and the optimal path planning algorithm based on Dijkstra algorithm and Prim algorithm. Experimental results show that the optimal planned travel line derived from the proposed model and algorithm is more reasonable, and the travelling order and distance would be further optimized.


Author(s):  
Jared G. Wood ◽  
Benjamin Kehoe ◽  
J. Karl Hedrick

Companies are starting to explore investing in UAV systems that come with standard autopilot trackers. There is a need for general cooperative local path planning algorithms that function with these types of systems. We have recently finished a project in which algorithms for autonomously searching for, detecting, and tracking ground targets was developed for a fixed-wing UAV with a visual spectrum gimballed camera. A set of scenarios are identified in which finite horizon path optimization results in a non-optimal ineffective path. For each of these scenarios, an appropriate path optimization problem is defined to replace finite horizon optimization. An algorithm is presented that determines which path optimization should be performed given a UAV state and target estimate probability distribution. The algorithm was implemented and thoroughly tested in flight experiments. The experimental work was successful and gave insight into what is required for a path planning algorithm to robustly work with standard waypoint tracking UAV systems. This paper presents the algorithm that was developed, theory supporting the algorithm, and experimental results.


Sign in / Sign up

Export Citation Format

Share Document