scholarly journals Post Disaster Mapping With Semantic Change Detection in Satellite Imagery

Author(s):  
Ananya Gupta ◽  
Elisabeth Welburn ◽  
Simon Watson ◽  
Hujun Yin
2020 ◽  
Vol 2020 (8) ◽  
pp. 114-1-114-7
Author(s):  
Bryan Blakeslee ◽  
Andreas Savakis

Change detection in image pairs has traditionally been a binary process, reporting either “Change” or “No Change.” In this paper, we present LambdaNet, a novel deep architecture for performing pixel-level directional change detection based on a four class classification scheme. LambdaNet successfully incorporates the notion of “directional change” and identifies differences between two images as “Additive Change” when a new object appears, “Subtractive Change” when an object is removed, “Exchange” when different objects are present in the same location, and “No Change.” To obtain pixel annotated change maps for training, we generated directional change class labels for the Change Detection 2014 dataset. Our tests illustrate that LambdaNet would be suitable for situations where the type of change is unstructured, such as change detection scenarios in satellite imagery.


Author(s):  
Zhuo Zheng ◽  
Yinhe Liu ◽  
Shiqi Tian ◽  
Junjue Wang ◽  
Ailong Ma ◽  
...  

Author(s):  
Qianyue Bao ◽  
Yang Liu ◽  
Zixiao Zhang ◽  
Dafan Chen ◽  
Yuting Yang ◽  
...  

2022 ◽  
Vol 183 ◽  
pp. 228-239
Author(s):  
Zhuo Zheng ◽  
Yanfei Zhong ◽  
Shiqi Tian ◽  
Ailong Ma ◽  
Liangpei Zhang

2010 ◽  
Vol 10 (10) ◽  
pp. 2179-2190 ◽  
Author(s):  
F. Tsai ◽  
J.-H. Hwang ◽  
L.-C. Chen ◽  
T.-H. Lin

Abstract. On 8 August 2009, the extreme rainfall of Typhoon Morakot triggered enormous landslides in mountainous regions of southern Taiwan, causing catastrophic infrastructure and property damages and human casualties. A comprehensive evaluation of the landslides is essential for the post-disaster reconstruction and should be helpful for future hazard mitigation. This paper presents a systematic approach to utilize multi-temporal satellite images and other geo-spatial data for the post-disaster assessment of landslides on a regional scale. Rigorous orthorectification and radiometric correction procedures were applied to the satellite images. Landslides were identified with NDVI filtering, change detection analysis and interactive post-analysis editing to produce an accurate landslide map. Spatial analysis was performed to obtain statistical characteristics of the identified landslides and their relationship with topographical factors. A total of 9333 landslides (22 590 ha) was detected from change detection analysis of satellite images. Most of the detected landslides are smaller than 10 ha. Less than 5% of them are larger than 10 ha but together they constitute more than 45% of the total landslide area. Spatial analysis of the detected landslides indicates that most of them have average elevations between 500 m to 2000 m and with average slope gradients between 20° and 40°. In addition, a particularly devastating landslide whose debris flow destroyed a riverside village was examined in depth for detailed investigation. The volume of this slide is estimated to be more than 2.6 million m3 with an average depth of 40 m.


Author(s):  
Adam Tsakalidis ◽  
◽  
Marya Bazzi ◽  
Mihai Cucuringu ◽  
Pierpaolo Basile ◽  
...  

2019 ◽  
Vol 11 (9) ◽  
pp. 1123 ◽  
Author(s):  
Jérémie Sublime ◽  
Ekaterina Kalinicheva

Post-disaster damage mapping is an essential task following tragic events such as hurricanes, earthquakes, and tsunamis. It is also a time-consuming and risky task that still often requires the sending of experts on the ground to meticulously map and assess the damages. Presently, the increasing number of remote-sensing satellites taking pictures of Earth on a regular basis with programs such as Sentinel, ASTER, or Landsat makes it easy to acquire almost in real time images from areas struck by a disaster before and after it hits. While the manual study of such images is also a tedious task, progress in artificial intelligence and in particular deep-learning techniques makes it possible to analyze such images to quickly detect areas that have been flooded or destroyed. From there, it is possible to evaluate both the extent and the severity of the damages. In this paper, we present a state-of-the-art deep-learning approach for change detection applied to satellite images taken before and after the Tohoku tsunami of 2011. We compare our approach with other machine-learning methods and show that our approach is superior to existing techniques due to its unsupervised nature, good performance, and relative speed of analysis.


Sign in / Sign up

Export Citation Format

Share Document