LambdaNet: A Fully Convolutional Architecture for Directional Change Detection

2020 ◽  
Vol 2020 (8) ◽  
pp. 114-1-114-7
Author(s):  
Bryan Blakeslee ◽  
Andreas Savakis

Change detection in image pairs has traditionally been a binary process, reporting either “Change” or “No Change.” In this paper, we present LambdaNet, a novel deep architecture for performing pixel-level directional change detection based on a four class classification scheme. LambdaNet successfully incorporates the notion of “directional change” and identifies differences between two images as “Additive Change” when a new object appears, “Subtractive Change” when an object is removed, “Exchange” when different objects are present in the same location, and “No Change.” To obtain pixel annotated change maps for training, we generated directional change class labels for the Change Detection 2014 dataset. Our tests illustrate that LambdaNet would be suitable for situations where the type of change is unstructured, such as change detection scenarios in satellite imagery.

2015 ◽  
Author(s):  
Daniela I. Moody ◽  
Cathy J. Wilson ◽  
Joel C. Rowland ◽  
Garrett L. Altmann

2020 ◽  
Vol 12 (17) ◽  
pp. 2669
Author(s):  
Junhao Qian ◽  
Min Xia ◽  
Yonghong Zhang ◽  
Jia Liu ◽  
Yiqing Xu

Change detection is a very important technique for remote sensing data analysis. Its mainstream solutions are either supervised or unsupervised. In supervised methods, most of the existing change detection methods using deep learning are related to semantic segmentation. However, these methods only use deep learning models to process the global information of an image but do not carry out specific trainings on changed and unchanged areas. As a result, many details of local changes could not be detected. In this work, a trilateral change detection network is proposed. The proposed network has three branches (a main module and two auxiliary modules, all of them are composed of convolutional neural networks (CNNs)), which focus on the overall information of bitemporal Google Earth image pairs, the changed areas and the unchanged areas, respectively. The proposed method is end-to-end trainable, and each component in the network does not need to be trained separately.


Author(s):  
René Vázquez-Jiménez ◽  
Rocío N. Ramos-Bernal ◽  
Raúl Romero-Calcerrada ◽  
Patricia Arrogante-Funes ◽  
Sulpicio Sanchez Tizapa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document