Net2Plan-AFDX: An open-source tool for optimization and performance evaluation of AFDX networks

Author(s):  
Laureano Fernandez-Olmos ◽  
Francesc Burrull ◽  
Pablo Pavon-Marino
2002 ◽  
Vol 56 (3-4) ◽  
pp. 161-164 ◽  
Author(s):  
B. Le Bot ◽  
K. Colliaux ◽  
D. Pelle ◽  
C. Briens ◽  
R. Seux ◽  
...  

Author(s):  
Nathan A. Jensen ◽  
Carl A. Nelson

Abstract Underactuated parallel manipulators that achieve 6 DOF via multiple controllable degrees of freedom per leg are often pursued and reported due to their large workspaces. This benefit comes at a cost to the manipulator’s performance, however. Such manipulators must then be evaluated in order to characterize their kinematics in terms of position and motion. This paper establishes a pair of inverse kinematic solutions for a previously proposed and prototyped 3-leg, 6-DOF parallel robot. These solutions are then used to define the robot’s workspace with experimental validation and to optimize the robot’s geometry for maximum workspace volume. The linear components of the Jacobian are then defined, allowing for analysis of the manipulability of the robot. The full Jacobian is also defined, and singularities are examined throughout the workspace of the robot.


Buildings ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 59 ◽  
Author(s):  
Lenka Kabošová ◽  
Stanislav Kmeť ◽  
Dušan Katunský

Over the past few decades, digital tools have become indispensable in the field of architecture. The complex design tasks that make up architectural design methods benefit from utilizing advanced simulation software and, consequently, design solutions have become more nature-adapted and site-specific. Computer simulations and performance-oriented design enable us to address global challenges, such as climate change, in the preliminary conceptual design phase. In this paper, an innovative architectural design method is introduced. This method consists of the following: (1) an analysis of the local microclimate, specifically the wind situation; (2) the parametric shape generation of the airport terminal incorporating wind as a form-finding factor; (3) Computational Fluid Dynamics (CFD) analysis; and (4) wind-performance studies of various shapes and designs. A combination of programs, such as Rhinoceros (Rhino), and open-source plug-ins, such as Grasshopper and Swift, along with the post-processing software Paraview, are utilized for the wind-performance evaluation of a case study airport terminal in Reykjavik, Iceland. The objective of this wind-performance evaluation is to enhance the local wind situation and, by employing the proposed architectural shape, to regulate the wind pattern to find the optimal wind flow around the designed building. By utilizing the aforementioned software, or other open-source software, the proposed method can be easily integrated into regular architectural practice.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 100448-100457
Author(s):  
Seung Hyun Lee ◽  
Ki Woong Seong ◽  
Kyu-Yup Lee ◽  
Dong Ho Shin

Sign in / Sign up

Export Citation Format

Share Document