Reliable and Robust Weakly Supervised Attention Networks for Surface Defect Detection

Author(s):  
Zijian Zhang ◽  
Chaozhang Lv ◽  
Meijun Sun ◽  
Zheng Wang
2019 ◽  
Vol 9 (15) ◽  
pp. 3159 ◽  
Author(s):  
Fei Zhou ◽  
Guihua Liu ◽  
Feng Xu ◽  
Hao Deng

Aiming at the problems of complex texture, variable interference factors and large sample acquisition in surface defect detection, a generic method of automated surface defect detection based on a bilinear model was proposed. To realize the automatic classification and localization of surface defects, a new Double-Visual Geometry Group16 (D-VGG16) is firstly designed as feature functions of the bilinear model. The global and local features fully extracted from the bilinear model by D-VGG16 are output to the soft-max function to realize the automatic classification of surface defects. Then the heat map of the original image is obtained by applying Gradient-weighted Class Activation Mapping (Grad-CAM) to the output features of D-VGG16. Finally, the defects in the original input image can be located automatically after processing the heat map with a threshold segmentation method. The training process of the proposed method is characterized by a small sample, end-to-end, and is weakly-supervised. Furthermore, experiments are performed on two public and two industrial datasets, which have different defective features in texture, shape and color. The results show that the proposed method can simultaneously realize the classification and localization of defects with different defective features. The average precision of the proposed method is above 99% on the four datasets, and is higher than the known latest algorithms.


2021 ◽  
Vol 33 (6) ◽  
pp. 920-928
Author(s):  
Meijun Sun ◽  
Chaozhang Lyu ◽  
Yahong Han ◽  
Sen Li ◽  
Zheng Wang

2021 ◽  
Vol 70 ◽  
pp. 1-13
Author(s):  
Lisha Cui ◽  
Xiaoheng Jiang ◽  
Mingliang Xu ◽  
Wanqing Li ◽  
Pei Lv ◽  
...  

2021 ◽  
pp. 1-18
Author(s):  
Hui Liu ◽  
Boxia He ◽  
Yong He ◽  
Xiaotian Tao

The existing seal ring surface defect detection methods for aerospace applications have the problems of low detection efficiency, strong specificity, large fine-grained classification errors, and unstable detection results. Considering these problems, a fine-grained seal ring surface defect detection algorithm for aerospace applications is proposed. Based on analysis of the stacking process of standard convolution, heat maps of original pixels in the receptive field participating in the convolution operation are quantified and generated. According to the generated heat map, the feature extraction optimization method of convolution combinations with different dilation rates is proposed, and an efficient convolution feature extraction network containing three kinds of dilated convolutions is designed. Combined with the O-ring surface defect features, a multiscale defect detection network is designed. Before the head of multiscale classification and position regression, feature fusion tree modules are added to ensure the reuse and compression of the responsive features of different receptive fields on the same scale feature maps. Experimental results show that on the O-rings-3000 testing dataset, the mean condition accuracy of the proposed algorithm reaches 95.10% for 5 types of surface defects of aerospace O-rings. Compared with RefineDet, the mean condition accuracy of the proposed algorithm is only reduced by 1.79%, while the parameters and FLOPs are reduced by 35.29% and 64.90%, respectively. Moreover, the proposed algorithm has good adaptability to image blur and light changes caused by the cutting of imaging hardware, thus saving the cost.


Sign in / Sign up

Export Citation Format

Share Document