Generalized Energy Storage Model-In-the-Loop Suitable for Energy Star and CTA-2045 Control Types

Author(s):  
Huangjie Gong ◽  
Evan S. Jones ◽  
A H M Jakaria ◽  
Aminul Huque ◽  
Ajit Renjit ◽  
...  
2020 ◽  
Vol 12 (12) ◽  
pp. 31-43
Author(s):  
Tatiana A. VASKOVSKAYA ◽  
◽  
Boris A. KLUS ◽  

The development of energy storage systems allows us to consider their usage for load profile leveling during operational planning on electricity markets. The paper proposes and analyses an application of an energy storage model to the electricity market in Russia with the focus on the day ahead market. We consider bidding, energy storage constraints for an optimal power flow problem, and locational marginal pricing. We show that the largest effect for the market and for the energy storage system would be gained by integration of the energy storage model into the market’s optimization models. The proposed theory has been tested on the optimal power flow model of the day ahead market in Russia of 10000-node Unified Energy System. It is shown that energy storage systems are in demand with a wide range of efficiencies and cycle costs.


2021 ◽  
pp. 1-1
Author(s):  
Ramana R. Avula ◽  
Jun-Xing Chin ◽  
Tobias J. Oechtering ◽  
Gabriela Hug ◽  
Daniel Mansson

2020 ◽  
Vol 6 ◽  
pp. 627-632 ◽  
Author(s):  
Yongli Ji ◽  
Qingshan Xu ◽  
Kaining Luan ◽  
Bin Yang

1982 ◽  
Vol 14 (02) ◽  
pp. 257-271 ◽  
Author(s):  
D. J. Daley ◽  
J. Haslett

The stochastic process {Xn } satisfying Xn +1 = max{Yn +1 + αβ Xn , βXn } where {Yn } is a stationary sequence of non-negative random variables and , 0<β <1, can be regarded as a simple thermal energy storage model with controlled input. Attention is mostly confined to the study of μ = EX where the random variable X has the stationary distribution for {Xn }. Even for special cases such as i.i.d. Yn or α = 0, little explicit information appears to be available on the distribution of X or μ . Accordingly, bounding techniques that have been exploited in queueing theory are used to study μ . The various bounds are illustrated numerically in a range of special cases.


Sign in / Sign up

Export Citation Format

Share Document