An Efficient Analysis of the Far-field Radiation of a Huygens Source Antenna Embedded in Dielectric Multilayer Slabs Using the Equivalent CCITL Model

Author(s):  
Supakit Kawdungta ◽  
Danai Torrungrueng ◽  
Alongkorn Lang
2019 ◽  
Vol 38 (9) ◽  
pp. 680-690 ◽  
Author(s):  
Benoît Teyssandier ◽  
John J. Sallas

Ten years ago, CGG launched a project to develop a new concept of marine vibrator (MV) technology. We present our work, concluding with the successful acquisition of a seismic image using an ocean-bottom-node 2D survey. The expectation for MV technology is that it could reduce ocean exposure to seismic source sound, enable new acquisition solutions, and improve seismic data quality. After consideration of our objectives in terms of imaging, productivity, acoustic efficiency, and operational risk, we developed two spectrally complementary prototypes to cover the seismic bandwidth. In practice, an array composed of several MV units is needed for images of comparable quality to those produced from air-gun data sets. Because coupling to the water is invariant, MV signals tend to be repeatable. Since far-field pressure is directly proportional to piston volumetric acceleration, the far-field radiation can be well controlled through accurate piston motion control. These features allow us to shape signals to match precisely a desired spectrum while observing equipment constraints. Over the last few years, an intensive validation process was conducted at our dedicated test facility. The MV units were exposed to 2000 hours of in-sea testing with only minor technical issues.


1971 ◽  
Vol 61 (4) ◽  
pp. 1009-1012 ◽  
Author(s):  
J. C. Savage

abstract The far-field radiation from a simple fault model is given by the radiation pattern associated with the appropriate strain nucleus (e.g., double couple) multiplied by a fault propagation factor. For a unilateral fault model the propagation factor is F ( c ; t ) = ζ bd [ H ( τ ) − H ( τ − ( L / ζ ) ( 1 − ( ζ / c ) cos ψ )) ] / ( 1 − ( ζ / c ) cos ψ ) where ξ is the velocity of fault propagation, b is the fault slip, d is the fault width, τ = t − r0/c, r0 is the distance of the observer from the initial point of faulting, c is the velocity of the seismic wave, H(τ) is the unit-step function, L is the length of the fault, and ψ the angle between r0 and the direction of fault propagation. This representation is valid for both subsonic and supersonic fault propagation. The latter case is important because Weertman (1969) has recently shown that spontaneous faulting may propagate at supersonic velocities. Because the propagation factor is always positive, the nodal planes for the radiation are the same as for the appropriate strain nucleus. Finally, it is shown by the application of this equation that the radiation from a screw dislocation segment is represented by the double-couple nucleus, not the compensated linear-vector dipole nucleus as recently suggested by Knopoff and Randall (1970).


Nano Letters ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 6906-6914 ◽  
Author(s):  
Sheng Liu ◽  
Aleksandr Vaskin ◽  
Sadhvikas Addamane ◽  
Benjamin Leung ◽  
Miao-Chan Tsai ◽  
...  

2012 ◽  
Vol 10 ◽  
pp. 69-73 ◽  
Author(s):  
K. A. Yinusa ◽  
C. H. Schmidt ◽  
T. F. Eibert

Abstract. Near-field measurements are established techniques to obtain the far-field radiation pattern of an Antenna Under Test via near-field measurements and subsequent near-field far-field transformation. For measurements acquired in echoic environments, additional post-processing is required to eliminate the effects of multipath signals in the resulting far-field pattern. One of such methods models the measurement environment as a multiple source scenario whereby the collected near-field data is attributed to the AUT and some scattering centers in the vicinity of the AUT. In this way, the contributions of the AUT at the probe can be separated from those of the disturbers during the near-field far-field transformation if the disturber locations are known. In this paper, we present ways of modeling the scattering centers on equivalent surfaces such that echo suppression is possible with only partial or no information about the geometry of the scatterers.


Sign in / Sign up

Export Citation Format

Share Document