seismic image
Recently Published Documents


TOTAL DOCUMENTS

339
(FIVE YEARS 110)

H-INDEX

32
(FIVE YEARS 6)

2022 ◽  
Vol 209 ◽  
pp. 109971
Author(s):  
Esmail Hosseini-Fard ◽  
Amin Roshandel-Kahoo ◽  
Mehrdad Soleimani-Monfared ◽  
Keyvan Khayer ◽  
Ali Reza Ahmadi-Fard

Geophysics ◽  
2021 ◽  
pp. 1-64
Author(s):  
Cinzia Bellezza ◽  
Flavio Poletto ◽  
Biancamaria Farina ◽  
Giorgia Pinna ◽  
Laurent Wouters ◽  
...  

The problem of localizing small (relative to wavelength) scatterers by diffractions to enhance their use in identifying small-scale details in a seismic image is extremely important in shallow exploration, to identify interesting features such as fractures, caves and faults. The conventional approach based on seismic reflection is limited in resolution by the Rayleigh criterion. In certain acquisition geometries, such as crosswell surveys aimed at obtaining high resolution signals, the availability of suitable datasets for effective migration depends on the spatial extent of the available source and receiver data intervals. With the aim of overcoming the resolution limits of seismic reflection, we studied the detectability, response, and location of meter- and possibly sub-meter-dimension carbonate concretions (septaria) in the Boom Clay Formation (potential host rocks for radioactive waste disposal) by diffraction analysis of high-frequency signals. We investigated diffraction wavefields by signal separation, focusing, and high-resolution coherency analysis using the MUltiple Signal Classification (MUSIC) method and semblance. The investigation was performed for two different surveys in Belgium, a shallow and high resolution Reverse Vertical Seismic Profile (RVSP) and a near-offset crosswell application at Kruibeke and ON-MOL-2 sites, respectively. The data analysis is supported by synthetic wavefield modeling. The multi-offset RVSP provides the appropriate geometry to observe and investigate the septaria diffractions both from depth and the surface. The crosswell approach, calibrated using synthetic data in the analysis of wavefield patterns in 2D, shows promising imaging results with field data of a selected diffraction zone in the interwell area.


2021 ◽  
pp. 1-50
Author(s):  
Jose P. Mora Ortiz ◽  
Heather Bedle ◽  
Kurt J. Marfurt

Fault identification is critical in defining the structural framework for both exploration and reservoir characterization studies. Interpreters routinely use edge-sensitive attributes such as coherence to accelerate the manual picking process, where the actual choice of a particular edge-sensitive attribute varies with the seismic data quality and with the reflectivity response of the faulted geologic formations. CMY color blending provides an effective way to combine the information content of two or three edge-sensitive attributes when more than one attribute is sensitive to faults. We evaluate whether combining the information content of more than three attributes using probabilistic neural networks (PNN) provides any additional uplift. We employ a training data consisting of manually picked faults on a coarse grid of 3D seismic lines, and then we employ an exhaustive search PNN to identify the optimal set of attributes to create a fault probability volume for a 3D survey acquired over the Great South Basin, New Zealand. We construct a suite of candidate attributes using our understanding of the attribute response to faults seen in the data and examples extracted from the published literature to use the list as the analyzed attributes. Using a subset of picked faults as training data, we evaluate which suite of attributes and hyperparameters exhibit the highest validation on the remaining training data. When used together, we find that volume aberrancy magnitude, GLCM homogeneity, GLCM entropy, Sobel filter similarity, and envelope best predict the faults for this dataset. The PNN supervised classification creates a seismic image volume that exhibits fault probabilities providing a simple combination of multiple seismic attributes. We also find that applying a directional Laplacian of a Gaussian and skeletonization filters to the PNN fault volumes provides a superior result to simple CMY blending techniques.


2021 ◽  
Author(s):  
Zu Biao Ren ◽  
Abdullah Akarim Al-Rabah ◽  
Antonio Pico ◽  
Michael Freeman

Abstract The challenge of Heavy oil thermal production Kuwait includes how to monitor steam flood effectiveness and cap rock integrity. Due to shallow & heterogeneous reservoirs and thin cap rock, pressurized and heated steam could diffuse in all directions and breach the cap rock. KOC acquired a baseline & time-lapsed surface seismic and 3D VSP for purposes of monitoring CSS production. This paper presents a technical application of seismic inversion to steam chamber size & cap rock integrity interpretation. The seismic image area includes 13 CSS wells, at varying CSS stages of steam injection, soaking and production. The data acquisition consisted of a base and a time-lapsed monitor seismic; each acquisition period lasting for around a week and separated by 40 day intervals. The simultaneous acquisition of surface seismic and the 3D VSP enabled complimentary data exchange and results validation. Well data of sonic and PHIT are used for building a low frequency inversion model. Rock physical modeling is also required to understand the effect of steam and production changes on acoustic and elastic properties. Various geophysical inversion methods are performed on AI inversion of post & pre stack seismic and Poisson's ratio inversion. To estimate reservoir temperature changes due to steam injection, the calibrated rock-physics model was utilized to relate the AI response to temperature change. The steam injection is expected to decrease acoustic impedance. The AI difference exhibits much wider impedance anomalies revealing steam chamber size and the production zone around the wells at various stages of the CSS cycle. Average temperature maps in reservoirs derived from rock-physical modeling also show temperature change around the wells. Inverted seismic attributes of acoustic impedance and temperature were used for study of cap rock integrity. Interpretation results of the steam size through AI and temperature analysis at reservoir and cap rock enable optimization of our CSS and SF completion strategies include steam pressure and volume, soaking period and thermal production control. The result of cap rock integrity monitoring also indicate no serious damage of cap rock under existing conditions of CSS operation (WHT: 420 °F & WHP: 320 PSI), which defines the limits of strategies to increase steam pressure and volume to increase EOR efficiency.


2021 ◽  
Author(s):  
Ramy Elasrag ◽  
Thuraya Al Ghafri ◽  
Faaeza Al Katheer ◽  
Yousuf Al-Aufi ◽  
Ivica Mihaljevic ◽  
...  

Abstract Acquiring surface seismic data can be challenging in areas of intense human activities, due to presence of infrastructures (roads, houses, rigs), often leaving large gaps in the fold of coverage that can span over several kilometers. Modern interpolation algorithms can interpolate up to a certain extent, but quality of reconstructed seismic data diminishes as the acquisition gap increases. This is where vintage seismic acquisition can aid processing and imaging, especially if previous acquisition did not face the same surface obstacles. In this paper we will present how the legacy seismic survey has helped to fill in the data gaps of the new acquisition and produced improved seismic image. The new acquisition survey is part of the Mega 3D onshore effort undertaken by ADNOC, characterized by dense shot and receiver spacing with focus on full azimuth and broadband. Due to surface infrastructures, data could not be completely acquired leaving sizable gap in the target area. However, a legacy seismic acquisition undertaken in 2014 had access to such gap zones, as infrastructures were not present at the time. Legacy seismic data has been previously processed and imaged, however simple post-imaging merge would not be adequate as two datasets were processed using different workflows and imaging was done using different velocity models. In order to synchronize the two datasets, we have processed them in parallel. Data matching and merging were done before regularization. It has been regularized to radial geometry using 5D Matching Pursuit with Fourier Interpolation (MPFI). This has provided 12 well sampled azimuth sectors that went through surface consistent processing, multiple attenuation, and residual noise attenuation. Near surface model was built using data-driven image-based static (DIBS) while reflection tomography was used to build the anisotropic velocity model. Imaging was done using Pre-Stack Kirchhoff Depth Migration. Processing legacy survey from the beginning has helped to improve signal to noise ratio which assisted with data merging to not degrade the quality of the end image. Building one near surface model allowed both datasets to match well in time domain. Bringing datasets to the same level was an important condition before matching and merging. Amplitude and phase analysis have shown that both surveys are aligned quite well with minimal difference. Only the portion of the legacy survey that covers the gap was used in the regularization, allowing MPFI to reconstruct missing data. Regularized data went through surface multiple attenuation and further noise attenuation as preconditioning for migration. Final image that is created using both datasets has allowed target to be imaged better.


2021 ◽  
Vol 0 (0) ◽  
pp. 1-13
Author(s):  
Moataz Barakat ◽  
Nader El-Gendy ◽  
Adly El-Nikhely ◽  
Ahmed Zakaria ◽  
Hany Hellish

Solid Earth ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 2703-2715
Author(s):  
Hossein Hassani ◽  
Felix Hloušek ◽  
Stefan Buske ◽  
Olaf Wallner

Abstract. We have used several flooding-induced microseismic events that occurred in an abandoned mining area to image geological structures close to the hypocentres in the vicinity of the mine. The events have been located using a migration-based localization approach. We used the recorded full waveforms of these localized microseismic events and have processed these passive source data as if they resulted from active sources at the known hypocentre location and origin time defined by the applied location approach. The imaging was then performed using a focusing 3D prestack depth migration approach for the secondary P-wave arrivals. The needed 3D migration velocity model was taken from a recent 3D active (controlled-source) seismic survey in that area. We observed several clear and pronounced reflectors in our obtained 3D seismic image cube, some of them related to a major fault zone in that area and some correlating well with information from the nearby mining activities. We compared our results to the 3D seismic image cube obtained directly from the 3D active seismic survey and have found new structures with our approach that were not known yet, probably because of their steep dips which the 3D active seismic survey had not illuminated. The location of the hypocentres at depth with respect to the illumination angles of those structures proved to be favourable in that case, and our 3D passive image complements the 3D active seismic image in an elegant way, thereby revealing new structures that cannot be imaged otherwise with surface seismic configurations alone.


2021 ◽  
Author(s):  
Pavlo Kuzmenko ◽  
Viktor Buhrii ◽  
Carlo D'Aguanno ◽  
Viktor Maliar ◽  
Hrigorii Kashuba ◽  
...  

Abstract Processing of the seismic data acquired in areas of complex geology of the Dnieper-Donets basin, characterized by the salt tectonics, requires special attention to the salt dome interpretation. For this purpose, Kirchhoff Depth Imaging and Reverse Time Migration (RTM) were applied and compared. This is the first such experience in the Dnieper-Donets basin. According to international experience, RTM is the most accurate seismic imaging method for steep and vertical geological (acoustic contrast) boundaries. Application of the RTM on 3D WAZ land data is a great challenge in Dnieper-Donets Basin because of the poor quality of the data with a low signal-to-noise ratio and irregular spatial sampling due to seismic acquisition gaps and missing traces. The RTM algorithm requires data, organized to native positions of seismic shots. For KPSDM we used regularized data after 5D interpolation. This affects the result for near salt reflection. The analysis of KPSDM and RTM results for the two areas revealed the same features. RTM seismic data looked more smoothed, but for steeply dipping reflections, lateral continuity of reflections was much improved. The upper part (1000 m) of the RTM has shadow zones caused by low fold. Other differences between Kirchhoff data and RTM are in the spectral content, as the former is characterized by the full range of seismic frequency spectrum. Conversely, beneath the salt, the RTM has reflections with steep dips which are not observed on the KPSDM. It is possible to identify new prospects using the RTM seismic image. Reverse Time Migration of 3D seismic data has shown geologically consistent results and has the potential to identify undiscovered hydrocarbon traps and to improve salt flank delineation in the complex geology of the Dnieper-Donets Basin's salt domes.


2021 ◽  
Vol 72 ◽  
pp. 113-122
Author(s):  
Amir Mustaqim Majdi ◽  
◽  
Seyed Yaser Moussavi Alashloo ◽  
Nik Nur Anis Amalina Nik Mohd Hassan ◽  
Abdul Rahim Md Arshad ◽  
...  

Traveltime is one of the propagating wave’s components. As the wave propagates further, the traveltime increases. It can be computed by solving wave equation of the ray path or the eikonal wave equation. Accurate method of computing traveltimes will give a significant impact on enhancing the output of seismic forward modeling and migration. In seismic forward modeling, computation of the wave’s traveltime locally by ray tracing method leads to low resolution of the resulting seismic image, especially when the subsurface is having a complex geology. However, computing the wave’s traveltime with a gridding scheme by finite difference methods able to overcomes the problem. This paper aims to discuss the ability of ray tracing and fast marching method of finite difference in obtaining a seismic image that have more similarity with its subsurface model. We illustrated the results of the traveltime computation by both methods in form of ray path projection and wavefront. We employed these methods in forward modeling and compared both resulting seismic images. Seismic migration is executed as a part of quality control (QC). We used a synthetic velocity model which based on a part of Malay Basin geology structure. Our findings shows that the seismic images produced by the application of fast marching finite difference method has better resolution than ray tracing method especially on deeper part of subsurface model.


Author(s):  
B.M. Glinskiy ◽  
G.F. Zhernyak ◽  
G.B. Zagorulko ◽  
P.A. Titov

The paper covers an intelligent support system that allows to describe and construct solutions to various scientific problems. In this study, in particular, we consider geophysical problems. This system is being developed at the Institute of Computational Mathematics and Mathematical Geophysics of the Russian Academy of Sciences (ICMMG SB RAS) and Institute of Informatics System of the Russian Academy of Sciences (IIS SB RAS). The system contains a knowledge base, the core of which is a set of several interconnected ontologies such as the ontology of supercomputer architectures, the ontology of algorithms and methods. Ontology can be viewed as a set of concepts and how those concepts are linked. As the result, the authors present an ontological description of two geophysical problems via the means of the intelligent support system: 1) the seismic wavefield simulation and 2) the reconstruction of a seismic image through pre-stack time or depth migration. For a better visual understanding of the system described and the results obtained, the paper also contains several schematic diagrams and images. В статье рассматривается система интеллектуальной поддержки, позволяющая описывать и выстраивать решения различных научных задач. В данной работе рассматриваются геофизические задачи. Система разрабатывается в Институте вычислительной математики и математической геофизики Российской академии наук (ИВМГ СО РАН) и Институте систем информатики Российской академии наук (ИИС СО РАН). Система содержит базу знаний, ядром которой является набор из нескольких взаимосвязанных онтологий, таких как онтология суперкомпьютерных архитектур, онтология алгоритмов и методов. Онтологию можно рассматривать как набор концепций и связей между ними. В результате авторы представляют онтологическое описание двух геофизических задач с помощью средств системы интеллектуальной поддержки: 1) моделирование сейсмического волнового поля и 2) реконструкция сейсмического изображения посредством временной или глубинной миграции до суммирования. Для лучшего визуального понимания описанной системы и полученных результатов в работе также есть несколько схематических диаграмм и изображений.


Sign in / Sign up

Export Citation Format

Share Document