Slot utilization for altering polarization of X-band microstrip patch antenna

Author(s):  
Yussi Perdana Saputra ◽  
Yuyu Wahyu ◽  
Achmad Munir
2018 ◽  
Vol 11 (19) ◽  
pp. 1-4
Author(s):  
V. Keral Shalini ◽  
M. Annakamatchi ◽  
S. Arthireena ◽  
◽  
◽  
...  

2021 ◽  
Author(s):  
Vijaya Mahesh Jangam ◽  
Tadiparthi Vijay Ganesh ◽  
Palivela Venkata Naga Raviteja

2018 ◽  
Vol 7 (2.6) ◽  
pp. 168
Author(s):  
Madhukant Patel ◽  
Veerendra Singh Jadaun ◽  
Kanhiya Lal ◽  
Piyush Kuchhal

This paper presents design a High Gain Small Size Microstrip Patch Antenna for X-Band applications such as Moving target RADAR sensor, Motion detector, Microwave camera, Ground Penetration RADAR sensors, wall penetration scanners and many medical applications. Now we have to selected circular geometry of micro strip patch antenna because circular geometry overcomes edge effect of antenna. The proposed antenna is designed to operate for X-band at the centre frequency of 10 GHz. The proposed Circular patch antenna is compact and easy to body mount with a high efficiency. The compactness makes it a better choice as compare with other antenna in the X-band. The proposed antenna shows a very sharp return loss of -46 dB at 10 GHz having narrow pattern with a good gain of 4.7 dBi. This enables its use in high directional applications. The paper represents the designing steps, and the simulation result obtained. The software used here for this circular shaped microstrip antenna is IE3D. Various parameters such as gain, power, radiation pattern, and S11 of the antenna are mentioned.


Author(s):  
Anubhuti Khare ◽  
Rajesh Nema

In this paper, optimization of a microstrip patch antenna is presented. The optimization uses a genetic algorithm in the IE3DTM Simulator. The optimization is done in several steps, first by changing the position of parasitic patches on the top layer, second by placing a feeding patch at the middle layer of geometry, and third by indirect coupling between the top and middle layer patches. Overall, we have performed many possible iterations and found appropriate geometry. From this appropriate geometry we have achieved maximum directional gain (6.2–8.8 dBi) over a 6 GHz bandwidth slot, 38% impedance bandwidth of the X-band and 14.8% impedance bandwidth of the Ku-band. The broadband frequency of operation is demonstrated by single geometry. The geometry of a single probe fed rectangular microstrip antenna incorporating a slot, gap coupled with a parasitic and an active patch on geometry, has been studied. We have investigated the height between active and parasitic patches as 0.0525λ and the height between parasitic patches itself as 0.0525λ. We have investigated the enhancement in maximum directional gain by stacking geometry with one active patch and two parasitic patches of different dimensions. This optimized antenna is used for X-band and Ku-band applications. The hardware validation and simulation results are matched to the proposed design.


Sign in / Sign up

Export Citation Format

Share Document