scholarly journals Design of a High Gain Compact Circular Microstrip Patch Antenna for X-Band

2018 ◽  
Vol 7 (2.6) ◽  
pp. 168
Author(s):  
Madhukant Patel ◽  
Veerendra Singh Jadaun ◽  
Kanhiya Lal ◽  
Piyush Kuchhal

This paper presents design a High Gain Small Size Microstrip Patch Antenna for X-Band applications such as Moving target RADAR sensor, Motion detector, Microwave camera, Ground Penetration RADAR sensors, wall penetration scanners and many medical applications. Now we have to selected circular geometry of micro strip patch antenna because circular geometry overcomes edge effect of antenna. The proposed antenna is designed to operate for X-band at the centre frequency of 10 GHz. The proposed Circular patch antenna is compact and easy to body mount with a high efficiency. The compactness makes it a better choice as compare with other antenna in the X-band. The proposed antenna shows a very sharp return loss of -46 dB at 10 GHz having narrow pattern with a good gain of 4.7 dBi. This enables its use in high directional applications. The paper represents the designing steps, and the simulation result obtained. The software used here for this circular shaped microstrip antenna is IE3D. Various parameters such as gain, power, radiation pattern, and S11 of the antenna are mentioned.

Author(s):  
Kalyan Mondal

In this work, a broadband high gain frequency selective surface (FSS)-based microstrip patch antenna is proposed. The dimensions of the microstrip antenna and proposed FSS are [Formula: see text] and [Formula: see text]. A broadband high gain reference antenna has been selected to improve antenna performance. The reference antenna offers 1.2[Formula: see text]GHz bandwidth with 6.03[Formula: see text]dBi peak gain. Some modifications have been done on the patch and ground plane to enhance the bandwidth and gain. The impedance bandwidth of 7.70[Formula: see text]GHz (3.42–11.12[Formula: see text]GHz) with 4.9 dBi peak gain is achieved by the microstrip antenna without FSS. The antenna performance is improved by using FSS beneath the antenna structure. The maximum impedance bandwidth of 7.70[Formula: see text]GHz (3.32–11.02[Formula: see text]GHz) and peak gain of 8.6[Formula: see text]dBi are achieved by the proposed antenna with FSS. Maximum co- and cross-polarization differences are 21[Formula: see text]dB. The simulation and measurement have been done using Ansoft Designer software and vector network analyzer. The measured results are in good parity with the simulated one.


2017 ◽  
Vol 7 (1.5) ◽  
pp. 176 ◽  
Author(s):  
Raj Gaurav Mishra ◽  
Ranjan Mishra ◽  
Piyush Kuchhal ◽  
N. Prasanthi Kumari

Microstrip antennas that can operate in single and multiple frequency bands are required in various wireless communication devices. A single patch, square shaped microstrip patch antenna having high directivity and gain is proposed in this paper. The geometry of proposed antenna is optimized using Genetic Algorithm (GA) to operate in X-Band for wideband applications. The proposed antenna design exhibits a wide operating bandwidth 550 MHz (simulated) and 450 MHz (measured), high gain and directivity of about 8.35 dB (simulated) making it suitable for wideband applications. The proposed antenna design works in X-band which has weatherproof characteristics and supports easy communication of voice, data, images and HD videos. The attractiveness of the GA design over the traditional design methods is its ability to achieve the desired performance by using a simple design of single patch antenna.


The circularly polarized microstrip antenna has been of great importance in WLAN applications. A circularly polarized slotted circular patch antenna with co-axial feed geometry has been designed to meet the requirements. The antenna designed has been slotted at several locations to make it radiate circularly polarized radiation. Two metallic cylindrical vias have been inserted near the two diametric ends of the slot to improve the realized gain of the antenna. The antenna structure is resonating at 6.4 GHz with 3dB axial ratio bandwidth of 200MHz and gain of 9.8dB has been observed.


2016 ◽  
Vol 2 (1) ◽  
pp. 47-58 ◽  
Author(s):  
Mohamed AlyAboul-Dahab ◽  
Hussein Hamed Mahmoud Ghouz ◽  
Ahmed Zakaria Ahmed Zaki

Author(s):  
Mohamed AlyAboul-Dahab ◽  
Hussein Hamed Mahmoud Ghouz ◽  
Ahmed Zakaria Ahmed Zaki

Sign in / Sign up

Export Citation Format

Share Document