Variable Speed Limits System: A Simulation-Based Case Study in the city of Naples

Author(s):  
Luca Di Costanzo ◽  
Angelo Coppola ◽  
Luigi Pariota ◽  
Alberto Petrillo ◽  
Stefania Santini ◽  
...  
2014 ◽  
Vol 15 (2) ◽  
pp. 130-143 ◽  
Author(s):  
Alvaro Garcia-Castro ◽  
Andres Monzon

Abstract Changing factors (mainly traffic intensity and weather conditions) affecting road conditions require a suitable optimal speed at any time. To solve this problem, variable speed limit systems (VSL) - as opposed to fixed limits - have been developed in recent decades. This term has included a number of speed management systems, most notably dynamic speed limits (DSL). In order to avoid the indiscriminate use of both terms in the literature, this paper proposes a simple classification and offers a review of some experiences, how their effects are evaluated and their results This study also presents a key indicator which measures the speed homogeneity and a methodology to obtain the data based on floating cars and GPS technology applying it to a case study on a section of the M30 urban motorway in Madrid (Spain). It also presents the relation between this indicator and road performance and emissions values.


Author(s):  
Elita Amrina ◽  
Regina Nofricha ◽  
Insannul Kamil ◽  
Nilda Tri Putri ◽  
Dicky Fatrias ◽  
...  

2021 ◽  
Vol 2042 (1) ◽  
pp. 012050
Author(s):  
Ekaterina Vititneva ◽  
Zhongming Shi ◽  
Pieter Herthogs ◽  
Reinhard König ◽  
Aurel von Richthofen ◽  
...  

Abstract This study discusses the interplays between urban form and energy performance using a case study in Singapore. We investigate educational urban quarters in the tropical climate of Singapore using simulation-based parametric geometric modelling. Three input variables of urban form were examined: street network orientation, street canyon width, and building depth. In total, 280 scenarios were generated using a quasi-Monte Carlo Saltelli sampler and Grasshopper. For each scenario, the City Energy Analyst, an open-source urban building energy simulation program, calculated solar energy penetration. To assess the variables’ importance, we applied Sobol’ sensitivity analysis. Results suggest that the street width and building depth were the most influential parameters.


2016 ◽  
Vol 40 (3) ◽  
pp. 843-852 ◽  
Author(s):  
Minghui Ma ◽  
Shidong Liang

Traffic congestion is a common problem in merging regions of freeway networks. An adaptive integrated control method involving variable speed limits and ramp metering is presented with the aim of easing traffic congestion at merging regions. The problem of the imbalanced rights of ways of the upstream mainline and on-ramp at the merging region is solved by constructing the evaluation indices of congestion degree. Specifically, the traffic density and queue length of the upstream mainline and on-ramp are selected for use in the evaluation indices. Then, an adaptive controller is designed, integrating variable speed limits and ramp metering. The proposed method is tested in simulations considering a real freeway network in China calibrated by real traffic variables. The results show that the proposed adaptive integrated control method can prevent traffic flow breakdown and maintain a high outflow at the merging region during peak periods. The adaptive integrated control may lead to a 17% improvement in traffic delay.


Sign in / Sign up

Export Citation Format

Share Document