An Active Power Control Strategy for Large-Scale Cluster Wind Power with Nested Transmission Section Constraints Considering the Control Delay Effect

Author(s):  
Zhuo Su ◽  
Xingnan Li ◽  
Zhongmiao Kang ◽  
Jiang Wenting
2021 ◽  
Vol 54 (1) ◽  
pp. 147-154
Author(s):  
Issam Griche ◽  
Sabir Messalti ◽  
Kamel Saoudi

The uncertainty of wind power brings great challenges to large-scale wind power integration. The conventional integration of wind power is difficult to adapt the demand of power grid planning and operation. This paper proposes an instantaneous power control strategy for voltage improvement in power networks using wind turbine improving the dynamical response of power systems performances (voltage and transient stability) after fault. In which the proposed control algorithm based on a new advanced control strategy to control the injected wind power into power system. The efficiency of developed control strategy has been tested using IEEE 9 Bus. Simulation results have showed that the proposed method perform better to preserve optimal performances over wide range of disturbances for both considered scenarios studied short circuit and variable loads.


Author(s):  
Congshan Li ◽  
Pu Zhong ◽  
Ping He ◽  
Yan Liu ◽  
Yan Fang ◽  
...  

: Two VSC-MTDC control strategies with different combinations of controllers are proposed to eliminate transient fluctuations in the DC voltage stability, resulting from a power imbalance in a VSC-MTDC connected to wind farms. First, an analysis is performed of a topological model of a VSC converter station and a VSC-MTDC, as well as of a mathematical model of a wind turbine. Then, the principles and characteristics of DC voltage slope control, constant active power control, and inner loop current control used in the VSC-MTDC are introduced. Finally, the PSCAD/EMTDC platform is used to establish an electromagnetic transient model of a wind farm connected to a parallel three-terminal VSC-HVDC. An analysis is performed for three cases of single-phase grounding faults on the rectifier and inverter sides of a converter station and of the withdrawal of the converter station on the rectifier side. Next, the fault response characteristics of VSC-MTDC are compared and analyzed. The simulation results verify the effectiveness of the two control strategies, both of which enable the system to maintain DC voltage stability and active power balance in the event of a fault. Background: The use of a VSC-MTDC to connect wind power to the grid has attracted considerable attention in recent years. A suitable VSC-MTDC control method can enable the stable operation of a power grid. Objective: The study aims to eliminate transient fluctuations in the DC voltage stability resulting from a power imbalance in a VSC-MTDC connected to a wind farm. Method: First, the topological structure and a model of a three-terminal VSC-HVDC system connected to wind farms are studied. Second, an analysis is performed of the outer loop DC voltage slope control, constant active power control and inner loop current control of the converter station of a VSC-MTDC. Two different control strategies are proposed for the parallel three-terminal VSC-HVDC system: the first is DC voltage slope control for the rectifier station and constant active power control for the inverter station, and the second is DC voltage slope control for the inverter station and constant active power for the rectifier station. Finally, a parallel three-terminal VSC-HVDC model is built based on the PSCAD/EMTDC platform and used to verify the accuracy and effectiveness of the proposed control strategy. Results: The results of simulation analysis of the faults on the rectifier and inverter sides of the system show that both strategies can restore the system to the stable operation. The effectiveness of the proposed control strategy is thus verified. Conclusion: The control strategy proposed in this paper provides a technical reference for designing a VSC-MTDC system for wind farms.


2020 ◽  
Vol 150 ◽  
pp. 656-669
Author(s):  
Sara Siniscalchi-Minna ◽  
Fernando D. Bianchi ◽  
Carlos Ocampo-Martinez ◽  
Jose Luis Domínguez-García ◽  
Bart De Schutter

Sign in / Sign up

Export Citation Format

Share Document