Stability of ultra long distance AC power transmission lines with controlled shunt compensation devices

Author(s):  
Andrey N. Belyaev ◽  
Kseniya A. Izotova ◽  
Ivan V. Kashin

Electrical power generated and transmitted at a long distance away from the power stations is usually affected by inherent transmission line losses. The Ohmic and Corona losses which are predominantly common in power transmission lines are considered in this paper. These two losses are mathematically modeled with and without embedded bundled conductors. The resultant model which is a non-linear multivariable unconstrained optimized equation is minimized using the Hessian matrix determinant method for stability test purposes. The results obtained show that corona losses are minimized with embedded bundled conductors at a very low current value with large spacing distance between the bundled conductors. The decrease in the corona loss which is a consequence of spacing adjustment of the 2, 3, and 4 strands of bundled conductors was plotted using MATLAB 7.14. The plots obtained are in conformity with the inverse relation between corona loss and conductor spacing.


2013 ◽  
Vol 385-386 ◽  
pp. 1112-1116
Author(s):  
Jun Zhu ◽  
Zi Qiang Xu ◽  
Qing Zhong Geng ◽  
Yun Peng Liu ◽  
Jiang Hai Geng

The transmission line corridor will inevitably cross the icing area in China. Icing will influence the corona characteristics of transmission lines. In order to deeply analyze the influence law of the icing to corona loss characteristics, an icing test platform that can be utilized to simulate icing conditions was built. Icing test was done in the corona cage of 1.8m×1.8m×4m. Through changing the conductivity of freezing water and the length of icicle, corona loss of the icing conductor was measured and the surface electric field was also simulated with the software ANSYS. The results show that the length of icicle is an important factor affecting the corona loss of the AC conductor and the conductivity of freezing water on that impact is not obvious. Owing to the icicles, the distortion of the conductor electric field is serious. With the increase of icicle length, conductor corona loss value increases significantly. When the length of icicle increases to about 18mm, the increase of the corona loss value is no longer obvious trending to be saturated . The simulation results coincided with the experimental results very well.


Sign in / Sign up

Export Citation Format

Share Document