Use of Nanosilica in Silicone Rubber Coatings for Ceramic Insulators in Coastal Areas - Field Results

Author(s):  
L.H. Meyer ◽  
S.H.L. Cabral ◽  
G.E. Cardoso ◽  
M.R. de Lima ◽  
F.H. Molina
Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3784
Author(s):  
Xiaobo Meng ◽  
Liming Wang ◽  
Hongwei Mei ◽  
Chuyan Zhang

A pollution flashover along an insulation surface—a catastrophic accident in electrical power system—threatens the safe and reliable operation of a power grid. Silicone rubber coatings are applied to the surfaces of other insulation materials in order to improve the pollution flashover voltage of the insulation structure. It is generally believed that the hydrophobicity of the silicone rubber coating is key to blocking the physical process of pollution flashover, which prevents the formation of continuously wet pollution areas. However, it is unclear whether silicone rubber coating can suppress the generation of pre-discharges such as corona discharge and streamer discharge. In this research, the influence of silicone rubber coating on the characteristics of surface streamer discharge was researched in-depth. The streamer ‘stability’ propagation fields of the polymer are lower than that of the polymer with silicone rubber coating. The velocities of the streamer propagation along the polymer are higher than those along the polymer with silicone rubber coating. This indicates that the surface properties of the polymer with the silicone rubber coating are less favorable for streamer propagation than those of the polymer.


2014 ◽  
Vol 668-669 ◽  
pp. 70-73
Author(s):  
Pei Song Liang ◽  
Ying Liang ◽  
Yun Peng Liu

A large number of ceramic insulators that are widely used in the power systems are returning shipment every year but there is no better processing method. Silicone rubber insulators have highly required the additive of the formulation. So this article combining the advantages of ceramic insulators and chemical composition, studies the mechanical properties of ceramics modified composite insulator materials. The measurements include the tensile strength, tear strength, hardness, SEM and Fourier transform infrared spectroscopy test of the new silicone rubber. The effects of adding different proportions of ceramic powder on the mechanical properties of silicone rubber are compared. And from the microscopic analysis the mechanism of the improved properties of the modified silicone rubber is analyzed. The results showed that a proportion of the ceramic part can replace aluminum hydroxide powder and the fumed silica powder can significantly improve the mechanical properties of the silicone rubber.


Sign in / Sign up

Export Citation Format

Share Document