scholarly journals EEG-GNN: Graph Neural Networks for Classification of Electroencephalogram (EEG) Signals

Author(s):  
Andac Demir ◽  
Toshiaki Koike-Akino ◽  
Ye Wang ◽  
Masaki Haruna ◽  
Deniz Erdogmus
2018 ◽  
Author(s):  
Ramiro Gatti ◽  
Yanina Atum ◽  
Luciano Schiaffino ◽  
Mads Jochumsen ◽  
José Biurrun Manresa

AbstractBuilding accurate movement decoding models from brain signals is crucial for many biomedical applications. Decoding specific movement features, such as speed and force, may provide additional useful information at the expense of increasing the complexity of the decoding problem. Recent attempts to predict movement speed and force from the electroencephalogram (EEG) achieved classification accuracy levels not better than chance, stressing the demand for more accurate prediction strategies. Thus, the aim of this study was to improve the prediction accuracy of hand movement speed and force from single-trial EEG signals recorded from healthy volunteers. A strategy based on convolutional neural networks (ConvNets) was tested, since it has previously shown good performance in the classification of EEG signals. ConvNets achieved an overall accuracy of 84% in the classification of two different levels of speed and force (4-class classification) from single-trial EEG. These results represent a substantial improvement over previously reported results, suggesting that hand movement speed and force can be accurately predicted from single-trial EEG.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2854 ◽  
Author(s):  
Kwon-Woo Ha ◽  
Jin-Woo Jeong

Various convolutional neural network (CNN)-based approaches have been recently proposed to improve the performance of motor imagery based-brain-computer interfaces (BCIs). However, the classification accuracy of CNNs is compromised when target data are distorted. Specifically for motor imagery electroencephalogram (EEG), the measured signals, even from the same person, are not consistent and can be significantly distorted. To overcome these limitations, we propose to apply a capsule network (CapsNet) for learning various properties of EEG signals, thereby achieving better and more robust performance than previous CNN methods. The proposed CapsNet-based framework classifies the two-class motor imagery, namely right-hand and left-hand movements. The motor imagery EEG signals are first transformed into 2D images using the short-time Fourier transform (STFT) algorithm and then used for training and testing the capsule network. The performance of the proposed framework was evaluated on the BCI competition IV 2b dataset. The proposed framework outperformed state-of-the-art CNN-based methods and various conventional machine learning approaches. The experimental results demonstrate the feasibility of the proposed approach for classification of motor imagery EEG signals.


Sign in / Sign up

Export Citation Format

Share Document