brain computer interfaces
Recently Published Documents


TOTAL DOCUMENTS

1605
(FIVE YEARS 470)

H-INDEX

77
(FIVE YEARS 10)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Timothée Proix ◽  
Jaime Delgado Saa ◽  
Andy Christen ◽  
Stephanie Martin ◽  
Brian N. Pasley ◽  
...  

AbstractReconstructing intended speech from neural activity using brain-computer interfaces holds great promises for people with severe speech production deficits. While decoding overt speech has progressed, decoding imagined speech has met limited success, mainly because the associated neural signals are weak and variable compared to overt speech, hence difficult to decode by learning algorithms. We obtained three electrocorticography datasets from 13 patients, with electrodes implanted for epilepsy evaluation, who performed overt and imagined speech production tasks. Based on recent theories of speech neural processing, we extracted consistent and specific neural features usable for future brain computer interfaces, and assessed their performance to discriminate speech items in articulatory, phonetic, and vocalic representation spaces. While high-frequency activity provided the best signal for overt speech, both low- and higher-frequency power and local cross-frequency contributed to imagined speech decoding, in particular in phonetic and vocalic, i.e. perceptual, spaces. These findings show that low-frequency power and cross-frequency dynamics contain key information for imagined speech decoding.


2022 ◽  
Author(s):  
Elton Ho ◽  
Mark Hettick ◽  
Demetrios Papageorgiou ◽  
Adam J Poole ◽  
Manuel Monge ◽  
...  

Progress toward the development of brain-computer interfaces has signaled the potential to restore, replace, or augment lost or impaired neurological function in a variety of disease states. Existing brain-computer interfaces rely on invasive surgical procedures or brain-penetrating electrodes, which limit addressable applications of the technology and the number of eligible patients. Here we describe a novel approach to constructing a neural interface, comprising conformable thin-film electrode arrays and a minimally invasive surgical delivery system that together facilitate communication with large portions of the cortical surface in bidirectional fashion (enabling both recording and stimulation). We demonstrate the safety and feasibility of rapidly delivering reversible implants containing over 2,000 microelectrodes to multiple functional regions in both hemispheres of the Gottingen minipig brain simultaneously, without requiring a craniotomy, at an effective insertion rate faster than 40 ms per channel, without damaging the cortical surface. We further demonstrate the performance of this system for high-density neural recording, focal cortical stimulation, and accurate neural decoding. Such a system promises to accelerate efforts to better decode and encode neural signals, and to expand the patient population that could benefit from neural interface technology.


Author(s):  
Eduardo Santamaría-Vázquez ◽  
Víctor Martínez-Cagigal ◽  
Sergio Pérez-Velasco ◽  
Diego Marcos-Martínez ◽  
Roberto Hornero

Author(s):  
Kevin Woeppel ◽  
Christopher Hughes ◽  
Angelica J. Herrera ◽  
James R. Eles ◽  
Elizabeth C. Tyler-Kabara ◽  
...  

Brain-computer interfaces are being developed to restore movement for people living with paralysis due to injury or disease. Although the therapeutic potential is great, long-term stability of the interface is critical for widespread clinical implementation. While many factors can affect recording and stimulation performance including electrode material stability and host tissue reaction, these factors have not been investigated in human implants. In this clinical study, we sought to characterize the material integrity and biological tissue encapsulation via explant analysis in an effort to identify factors that influence electrophysiological performance. We examined a total of six Utah arrays explanted from two human participants involved in intracortical BCI studies. Two platinum (Pt) arrays were implanted for 980 days in one participant (P1) and two Pt and two iridium oxide (IrOx) arrays were implanted for 182 days in the second participant (P2). We observed that the recording quality followed a similar trend in all six arrays with an initial increase in peak-to-peak voltage during the first 30–40 days and gradual decline thereafter in P1. Using optical and two-photon microscopy we observed a higher degree of tissue encapsulation on both arrays implanted for longer durations in participant P1. We then used scanning electron microscopy and energy dispersive X-ray spectroscopy to assess material degradation. All measures of material degradation for the Pt arrays were found to be more prominent in the participant with a longer implantation time. Two IrOx arrays were subjected to brief survey stimulations, and one of these arrays showed loss of iridium from most of the stimulated sites. Recording performance appeared to be unaffected by this loss of iridium, suggesting that the adhesion of IrOx coating may have been compromised by the stimulation, but the metal layer did not detach until or after array removal. In summary, both tissue encapsulation and material degradation were more pronounced in the arrays that were implanted for a longer duration. Additionally, these arrays also had lower signal amplitude and impedance. New biomaterial strategies that minimize fibrotic encapsulation and enhance material stability should be developed to achieve high quality recording and stimulation for longer implantation periods.


2021 ◽  
Vol 18 ◽  
pp. 100246
Author(s):  
Leopoldo Angrisani ◽  
Pasquale Arpaia ◽  
Antonio Esposito ◽  
Ludovica Gargiulo ◽  
Angela Natalizio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document