A Lyapunov-function-based control strategy for stable operation of a grid-connected DC microgrid with variable generations and energy storage

Author(s):  
S. Sajjad Seyedalipour ◽  
Gevork B. Gharehpetian
Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1261
Author(s):  
Dina Emara ◽  
Mohamed Ezzat ◽  
Almoataz Y. Abdelaziz ◽  
Karar Mahmoud ◽  
Matti Lehtonen ◽  
...  

Recently, the penetration of energy storage systems and photovoltaics has been significantly expanded worldwide. In this regard, this paper presents the enhanced operation and control of DC microgrid systems, which are based on photovoltaic modules, battery storage systems, and DC load. DC–DC and DC–AC converters are coordinated and controlled to achieve DC voltage stability in the microgrid. To achieve such an ambitious target, the system is widely operated in two different modes: stand-alone and grid-connected modes. The novel control strategy enables maximum power generation from the photovoltaic system across different techniques for operating the microgrid. Six different cases are simulated and analyzed using the MATLAB/Simulink platform while varying irradiance levels and consequently varying photovoltaic generation. The proposed system achieves voltage and power stability at different load demands. It is illustrated that the grid-tied mode of operation regulated by voltage source converter control offers more stability than the islanded mode. In general, the proposed battery converter control introduces a stable operation and regulated DC voltage but with few voltage spikes. The merit of the integrated DC microgrid with batteries is to attain further flexibility and reliability through balancing power demand and generation. The simulation results also show the system can operate properly in normal or abnormal cases, thanks to the proposed control strategy, which can regulate the voltage stability of the DC bus in the microgrid with energy storage systems and photovoltaics.


Author(s):  
Narsa Reddy Tummuru ◽  
Ujjal Manandhar ◽  
Abhisek Ukil ◽  
Hoay Beng Gooi ◽  
Sathish Kumar Kollimalla ◽  
...  

2022 ◽  
Vol 48 ◽  
pp. 103983
Author(s):  
Seydali Ferahtia ◽  
Ali Djeroui ◽  
Hegazy Rezk ◽  
Aissa Chouder ◽  
Azeddine Houari ◽  
...  

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2637 ◽  
Author(s):  
Mingxuan Chen ◽  
Suliang Ma ◽  
Haiyong Wan ◽  
Jianwen Wu ◽  
Yuan Jiang

DC microgrid systems that integrate energy distribution, energy storage, and load units can be viewed as examples of reliable and efficient power systems. However, the isolated operation of DC microgrids, in the case of a power-grid failure, is a key factor limiting their development. In this paper, we analyze the six typical operation modes of an off-grid DC microgrid based on a photovoltaic energy storage system (PV-ESS), as well as the operational characteristics of the different units that comprise the microgrid, from the perspective of power balance. We also analyze the key distributed control techniques for mode transformation, based on the demands of the different modes of operation. Possible reasons for the failure of PV systems under the control of a voltage stabilizer are also explored, according to the characteristics of the PV output. Based on this information, we propose a novel control scheme for the seamless transition of the PV generation units between the maximum PV power tracking and steady voltage control processes, to avoid power and voltage oscillations. Adaptive drooping and stabilization control of the state of charge of the energy storage units are also considered, for the protection of the ESS and for reducing the possibilities of overcharging and/or over-discharging. Finally, various operation conditions are simulated using MATLAB/Simulink, to validate the performance of the proposed control strategy.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 834
Author(s):  
Jiechao Lv ◽  
Xiaoli Wang ◽  
Guishuo Wang ◽  
Yuhou Song

With the rapid development of renewable energy technologies, islanded DC microgrids have received extensive attention in the field of distributed power generation due to their plug-and-play, flexible operation modes and convenient power conversion, and are likely to be one of the mainstream structures of microgrids in the future. The islanded DC microgrid contains multiple distributed power generation units. The battery energy storage system (BESS) is the main controlled unit used to smooth power fluctuations. The main parameter of concern is the state of charge (SOC). In order to maintain the stability of the microgrid, this paper takes the islanded DC microgrid as the research object and designs a control strategy based on the SOC of the BESS. Additionally, in the control strategy, the BESS’s energy balance control strategy and the microgrid’s operation control strategy are emphatically designed. The designed BESS control strategy adjusts the droop coefficient in real time according to the SOC of the battery energy storage unit (BESU), and controls the charge and discharge power of the BESU to achieve the SOC balance among the BESUs. The microgrid operation control strategy takes the energy storage system (ESS) as the main controlled unit to suppress power fluctuations, and distributes the power of distributed power sources according to the SOC of the BESS to achieve power balance in the microgrid, and control the DC bus voltage fluctuation deviation within 4.5%.


Sign in / Sign up

Export Citation Format

Share Document